Synthesis of the C-Glycosidic Analogue of Adenophostin A and Its Uracil Congener as Potential IP₃ Receptor Ligands. Stereoselective Construction of the C-Glycosidic Structure by a **Temporary Silicon-Tethered Radical Coupling Reaction[†]**

Hiroshi Abe, Satoshi Shuto,* and Akira Matsuda

Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan

Received February 2, 2000

Synthesis of the C-glycosidic analogue 9 of adenophostin A, a very potent IP₃ receptor agonist, and its uracil congener 10 was achieved via a temporary silicon-tethered radical coupling reaction as the key step. Phenyl 3,4,6-tri-O-(p-methoxybenzyl)-1-seleno-β-D-glucopyranoside (27) and 3-deoxy-3-methylene-1,2-O-isopropylidene- α -D-*erythro*-pentofuranose (**30**) were connected by a dimethylsilyl tether to give the radical coupling reaction substrate 24, which was successively treated with Bu₃-SnH/AIBN in benzene and TBAF in THF to give the coupling product **25** with the desired $(3\alpha, 1'\alpha)$ configuration as the major product. From 25, the targets 9 and 10 were synthesized via introduction of adenine or uracil base by Vorbrüggen's method and phosphorylation of the hydroxyls by the phosphoramidite method.

Introduction

Considerable attention has been focused on D-myoinositol 1,4,5-trisphosphate (IP₃), an intracellular Ca²⁺mobilizing second messenger, because of its significant biological importance.^{1,2} Therefore, analogues of IP₃ have been extensively studied to develop specific ligands for IP₃ receptors, which are very useful for proving the mechanism of IP₃-mediated Ca²⁺ signaling pathways.³ However, none of these analogues has surpassed IP₃ itself either in binding affinity for the IP₃ receptor or in Ca²⁺mobilizing activity.³

Recently, Takahashi and co-workers isolated adenophostin A (2) and B (3) from Penicillium brevicompactum and found them to be very strong IP₃ receptor ligands. Compounds **2** and **3** are 10–100 times more potent than IP₃ with regard to both their affinity for the IP₃ receptor and their Ca²⁺-mobilizing ability in cells.⁴ Because of this interesting biological feature, adenophostins are considered attractive targets of total synthesis.⁵ Their intriguing structural features have also prompted several groups including ours to perform synthetic studies of novel IP₃

receptor ligands.^{6,7} Biological evaluations of these compounds, 4, 5, 6, and 7, the structures of which are shown in Figure 1, showed that (1) the α -D-glucopyranose structure is a good bioisostere of the myo-inositol backbone of IP_{3} ; (2) the three-dimensional locations of the three phosphate groups of adenophostin A and its analogues are critical for their biological activity; and (3) the adenine moiety significantly enhances the activity.^{6,7}

C-Glycosides, on the other hand, have been extensively studied since they are biologically stable mimics of the corresponding *O*-glycosides.⁸ We designed the *C*-glycosidic analogue 9 of adenophostin A as a novel IP₃ receptor ligand. As described above, the three-dimensional locations of the phosphate groups of adenophostin A and B are critical for their biological activity. The conformation around the glycosyl linkages in carbohydrates, such as

[†] Nucleosides and Nucleotides. 197. For part 196 in the series, see: Nomura, M.; Shuto, S.; Matsuda, A. J. Org. Chem., in press

To whom correspondence and reprint requests should be addressed. Phone: +81-11-706-3229. Fax: +81-11-706-4980. E-mail: shu@pharm.hokudai.ac.jp.
(1) Berridge, M. J. Nature 1993, 361, 315–325.
(2) Potter, B. V. L.; Nahorski, S. R. In Drug Design for Neuroscience,

Kozikowski, A. P. Ed. New York: Raven Press: 1993; pp 383-416.

⁽³⁾ Potter, B. V. L.; Lampe, D. Angew. Chem., Int. Ed. Engl. 1995, 34, 1933–1972, and references sited therein.

^{34, 1933–1972,} and references sited therein.
(4) (a) Takahashi, M.; Kagasaki, T.; Hosoya, T.; Takahashi, S. J. Antibiot. 1993, 46, 1643–1647. (b) Takahashi, S.; Kinoshita, T.; Takahashi, M. J. Antibiot. 1994, 47, 95–100. (c) Takahashi, M.; Tanzawa, K.; Takahashi, S. J. Biol. Chem. 1994, 269, 369–372. (d) Hirota, J.; Michikawa, T.; Miyawaki, A.; Takahashi, M.; Tanzawa, K.; Okura, I.; Furuichi, T.; Mikoshiba, K. FEBS Lett. 1995, 368, 248– 252

^{(5) (}a) Hotoda, H.; Takahashi, M.; Tanzawa, K.; Takahashi, S.; Kaneko, M. *Tetrahedron Lett.* 1995, *36*, 5037–5040. (b) van Straten,
 N. C. R.; van der Marel, G. A.; van Boom, J. H. *Tetrahedron* 1997, *53*, 6509–6522. (c) Marwood, R. D.; Correa, V.; Taylor, C. W.; Potter, B. V. L. *Tetrahedron Asymm.* 2000, *11*, 397–403.

⁽⁶⁾ Studies on analogues of adenophostin A by us: (a) Tatani, K.; Shuto, S.; Ueno, Y.; Matsuda, A. Tetrahedron Lett. 1998, 39, 5065-5068. (b) Shuto, S.; Tatani, K.; Ueno, Y. Matsuda, A. J. Org. Chem. **1998**, *63*, 8815–8824. (c) Kashiwayanagi, M.; Tatani, K.; Shuto, S.; Matsuda, A. *Eur. J. Neurosci.* **2000**, *12*, 606–612. (d) Shuto, S.; Terauchi, M.; Yahiro, Y.; Abe, H. Ichikawa, S.; Matsuda, A. Tetrahedron Lett. 2000, 41, 4151-4155.

⁽⁷⁾ Studies on analogues of adenophostin A by others (a) Jenkins, D. J.; Potter, B. V. L. *Carbohydr. Res.* **1996**, **287**, 169–182. (b) Marchant, J. S.; Beecroft, M. D.; Riley, A. M.; Jenkins, D. J.; Marwood,
 R. D.; Taylor, C. W.; Potter, B. V. L. *Biochemistry* 1997, *36*, 12780–12790. (c) Murphy, C. T.; Riley, A. M.; Lindley, C. J.; Jenkins, D. J.; Westwick, J.; Potter, B. V. L. Mol. Pharmacol. 1997, 52, 741-748. (d) Marwood. R. D.; Riley, A. M.; Correa, V.; Taylor, C. W.; Potter, B. V. L. *Bioorg. Med. Chem. Lett.* **199**9, *9*, 453–458. (e) Beecroft, M. D.; Marchant, J. S.; Riley, A. M.; van Straten, N. C. R.; van der Marel, G. A.; van Boom, J. H; Potter, B. V. L.; Taylor, C. W. *Mol Pharmacol.*, **1999**, *55*, 109–117. (f) Wilcox, R. A.; Erneux, C.; Primrose, W. U.; Gigg, R.; Nahorski, S. R. Mol. Pharmacol. 1995, 47, 1204-1211. (g) van Straten, N. C. R.; van der Marel, G. A.; van Boom, J. H. Tetrahedron, **1997**, *53*, 6523–6538. (h) van Straten, N. C. R.; Kriek, N. M. A. J.; Cziria, Z. A. C.; van der Marel, G. A.; van Boom, J. H. *Tetrahedron*, **1997**, *53*, 6539–6554. (i) Hotoda, H.; Murayama, K.; Miyamoto, S.; Iwata, Y.; Takahashi, M.; Kawase, Y.; Tanzawa, K. Kaneko, M. Biochemistry, 1990, 38, 9234–9241.
 (8) (a) Postema, M. H. D. Tetrahedron 1992, 48, 8545–8599. (b)

Jaramillo, C.; Knapp S. *Synthesis* **1994**, 1–20. (c) Levy, D. E.; Tang, C. *The Chemistry of C-Glycosides*. Oxford: Pergamon Press: 1995. (d) Postema, M. H. D. *C-Glycoside Synthesis*. Boca Raton: CRC Press: 1995.

Figure 1.

adenophostins, which is known to be affected significantly by the anomeric effect of the sugar-ring oxygen, is an important determinant in the three-dimensional structure of these molecules.⁹ Therefore, we were interested in investigating the biological activity and conformation of the *C*-glycoside **9** and in comparing these results with those of the parent *O*-glycoside, adenophostin A. This study may clarify the role of the glycosidic oxygen on the biological activity as well as the molecular conformation of adenophostin A.

The uracil congener **10** of *C*-glycosidic adenophostin was another of our synthetic targets, since the adenophostin analogue **8** having a uracil instead of an adenine as the base moiety was most recently identified as a very potent IP_3 receptor agonist.¹⁰

Synthetic Study with Silyl-Tethered Adenosine Derivative 12 as a Substrate for the Radical Coupling Reaction. In the synthesis of the target compound 9, formation of the *C*-glycosidic linkage with the desired $(3'\alpha, 1''\alpha)$ -configuration is considered the key step. The use of radical reactions is an efficient methods for constructing *C*-glycosidic bonds.⁸ Recently, a very efficient method for preparing *C*-glycosidic disaccharides by a temporary silicon-tethered reductive radical coupling reaction was reported.¹¹ We planned to use this type of radical coupling reaction as the key step for synthesizing the *C*-glycosidic analogue of adenophostin A.¹² Our

(11) Synthetic studies of *C*-glycosidic disaccharides using the temporary silicon-tethered radical coupling strategy: (a) Xin, Y. C.; Mallet, J.-M.; Sinay, P. *J. Chem. Soc. Chem. Commun.* **1993**, 864–865. (b) Myers, A. G.; Gin, D. Y.; Rogers, D. H. *J. Am. Chem. Soc.* **1994**, *116*, 4697–4718. (c) Fairbanks, A. J.; Perrin, E.; Sinay, P. *Synlett* **1996**, 679–681. (d) Rekai, E.; Rubinsten, G.; Mallet, J.-M. M.; Sinay, P. *Synlett* **1998**, 831–834. (e) Rubinsten, G.; Mallet, J.-M.; Sinay, P. *Tetrahedron Lett.* **1998**, *39*, 3697–3700.

(12) A part of this study has been described in a communication: Abe, H.; Shuto, S.; Matsuda, A. *Tetrahedron Lett.* **2000**, *41*, 2391–2394.

(13) (a) Giese B. Angew. Chem., Int. Ed. Engl. 1989, 28, 969–980.
(b) Rychnovsky, S. D.; Powers, J. P.; Lepage, T. J. J. Am. Chem. Soc. 1992, 114, 8375–8384.

synthetic plan is shown in Scheme 1. The key *C*-glycosidic linkage is constructed by a reductive radical coupling reaction of the silaketal-tethered substrate **12**, which can be prepared from the 1-phenylselenoglucose unit **13** and the 3'-exomethylene adenosine unit **14**. It is known that anomeric radicals of glucose derivatives adopt a B_{2,5} boatlike conformation and that their addition reactions on alkenes selectively occur from the *axial* direction due to the anomeric effect to give the corresponding α -*C*glycosides.¹³ We therefore expected that radical reaction of **12** and subsequent removal of the silyl tether would give the desired *C*-glycosidic product **11** with the desired (3' α ,1" α)-configuration. From **11**, the target compound **9** can be synthesized via introduction of the phosphate groups.

^{(9) (}a) Juaristi, E.; Cuevas, G. *Tetrahedron*, **1992**, *48*, 5019–5087.
(b) Chapleur, Y. Eds. *Carbohydrate Mimics*. Weinheim: Wiley-VCH: 1998.

^{(10) (}a) Marwood, R. D.; Shuto, S.; Jenkins, D. J.; Potter, B. V. L. *Chem. Commun.* **2000**, 219–220. (b) Correa, V. Marwood, R. D.; Shuto, S.; Riley, A. M.; Jenkins, D. J.; Potter, B. V. L.; Taylor, C. W. *Brit. J. Pharmacol.* in press.

Scheme 2^a

^a Conditions: (a) (1) NaOMe, THF/MeOH, rt, (2) NaH, BnBr, HMPA/DMF, rt; (b) (1) PhSeH, molecular sieves 3A, MeNO₂, reflux; (c) NaOMe, THF/MeOH, rt, 59% (from **15**); (d) (1) CrO₃, Ac₂O, py, molecular sieves 4A, CH₂Cl₂, rt, (2) NaOCMe₂Et, Ph₃PMeBr, THF, rt, 72%; (e) (1) BzCl, DMAP, py, rt, (2) aqueous NH₃, 0 °C, 95%; (f) TFA, CHCl₃, rt, 84%; (g) (1) **13**, Me₂SiCl₂, BuLi, THF, -78 °C to rt, (2) **14**, Et₃N, THF, 0 °C to rt; (f) (1) Bu₃SnH, AIBN, benzene, reflux, (2) TBAF, THF, rt, **21** + **22** (35% from **13**, 28:72), **23** (25% from **13**).

The synthesis and radical reaction of the substrate 12 is summarized in Scheme 2. Removal of the acetyl groups of the known ortho ester 15¹⁴ and subsequent protection of the resulting hydroxyls with benzyl groups gave 16. A PhSe group was introduced at the anomeric β -position by treating 16 with PhSeH/molecular sieves 3A,15 and the resulting 2-O-acetyl group was removed to complete the synthesis of pyranose unit 13. 2'-O-TBS-5'-O-Tradenosine (18) was successively treated with $CrO_3/Ac_2O/$ pyridine/molecular sieves 4A in CH₂Cl₂, and Ph₃P=CH₂ in THF gave the 3'-methylene derivative 19.16 Protection of the N^6 -amino function of **19** with a benzoyl group¹⁷ and removal of the 5'-O-Tr group with TFA in CHCl₃ gave the adenosine unit 14. Next, the units 13 and 14 were temporarily connected with a silaketal linkage. Thus, treatment of 13 with BuLi/Me₂SiCl₂ in THF yielded the corresponding 2-O-Si(Cl)Me₂ product, which was then treated with 14 in the presence of Et_3N to give the silaketal 12, the substrate for the radical coupling reaction. The compound **12** was used directly for the next radical reaction without purification because of its instability.

The reductive coupling reaction of **12** was investigated with Bu₃SnH/AIBN under various conditions, and the products were purified by silica gel column chromatography after the radical reaction mixture was treated with TBAF in THF to remove the silyl tether. However, none of the desired $(3'\alpha, 1''\alpha)$ -*C*-glycoside **11** was obtained. For example, when a solution of Bu₃SnH (2.0 equiv) and AIBN (0.7 equiv) in benzene was added slowly over 1.2 h to a solution of **12** in benzene at 80 °C, a mixture of the undesired $(3'\beta, 1''\alpha)$ -*C*-glycoside **21** and $(3'\beta, 1''\beta)$ -*C*glycoside **22** resulted in 35% yield (**21:22** = 28:72), along

Figure 2.

with the direct reduction product **23** (25%), after desilylation. After the products were converted into the corresponding pentabenzoates **21**' and **22**', their stereochemistries were confirmed by ¹H NMR spectra and NOE experiments, as shown in Figure 2.

These results suggested that in the anomeric radical intermediate (**I** or **II**), it would be difficult for the 3'-methylene moiety to approach the anomeric radical from the α -face, probably due to the steric repulsion between the bulky 2'-*O*-TBS group and the pyranose ring, to give the 1" β -product selectively, as shown in Scheme 3. Subsequent reduction of the resulting 3'-radical **III** by Bu₃SnH from the desired β -face was also disfavored, since the β -face of the ribose moiety of **III** was likely to be sterically very hindered due to the adenine base, and therefore would give the (3' β ,1" β)-product **IV** as the major product (Scheme 3).

Synthetic Study with the Silyl-Tethered Ribose Derivative 24 as a Substrate for the Radical Cou-

⁽¹⁴⁾ Banoub, J.; Boullanger, P.; Potier, M.; Descotes, G. *Tetrahedron Lett.* **1986**, *27*, 4145–4148.

⁽¹⁵⁾ A similar ring-opening reaction of sugar ortho esters with PhSH has been reported: Skrydstrup, T.; Mazéas, D.; Elmouchir, M.; Doisneau, G.; Riche, C.; Chiaroni, A.; Beau, J.-M. *Chem. Eur.* J. **1997**, *3*, 1342–1356.

⁽¹⁶⁾ Synthesis of a similar 3'-deoxy-3'-methyleneadenosine derivative has been reportted: Samana, V.; Robins, M. J. *J. Org. Chem.* **1991**, *56*, 7108–7113.

⁽¹⁷⁾ Ti, G. S.; Gaffney, B. L.; Jones, R. A. J. Am. Chem. Soc. 1982, 104, 1316–1319.

pling Reaction. Based on the above unsuccessful results, we designed an alternative substrate **24** (Scheme 4), in which 1,2-*O*-isopropylidene-3-methyleneribose derivative is connected with a glucose unit by a silyl tether, for the radical reaction. We assumed that the radical **V** derived from the substrate **24** would cyclize stereoselec-

tively, due to the stereoelectronic effect¹³ described above, to give the α -*C*-glycosidic radical **VI**. Subsequent reduction by Bu₃SnH would likely occur from the sterically unhindered β -face of the furanose ring, because of the steric repulsion of the isopropylidene group when Bu₃-SnH attacked the 3-radical from the α -face. Accordingly, this radical reaction should proceed stereoselectively to give **VII**, and subsequent desilylation would give **25** with the desired (3 α , 1' α)-configuration (Scheme 4). From **25**, the target compounds **9** and **10** would be synthesized via the introduction of a nucleobase at the 1 β -position by Vorbrüggen's procedure.¹⁸

The synthesis of the substrate **24** is shown in Scheme 5. The glucose unit **27** was synthesized from **15** by a method similar to the one for **13** described above. A Wittig reaction of a 3-keto sugar **28**,¹⁹ prepared from D-xylose, with $Ph_3P=CH_2$ in THF gave the corresponding 3'-methylene product **29**, the 5-*O*-TBS group of which was removed with TBAF to give the furanose unit **30**. Next, the units **27** and **30** were temporarily connected with a silaketal linkage to give **24** in 67% yield.

The reductive coupling reaction of 24 was investigated with Bu₃SnH/AIBN under various conditions. When a solution of Bu₃SnH (2.0 equiv) and AIBN (0.5 equiv) in benzene was added slowly over 1.2 h to a solution of 24 in benzene at 80 °C, the best result was obtained. After the reaction mixture was treated with TBAF in THF and purified by silica gel flash chromatography, the desired $(3\alpha, 1'\alpha)$ -*C*-glycoside **25** was obtained as the major product (50%) along with the *C*-glycoside **31** having the $(3\alpha, 1'\beta)$ configuration (22%) and the directly reduced product 32 (25%). A similar radical reaction of 24 at 110 °C in toluene and subsequent desilylation also gave the desired 25; however, the yield was poorer (25 22%, 31 14%, 32 36%). The stereochemistries of these C-glycosidic products were confirmed by ¹H NMR and gradient enhanced NOE (GOESY) spectra of the corresponding dibenzoates, as shown in Figure 3. One-pot conversion of 27 and 30 into the *C*-glycoside **25** was further investigated, since we noted that the silvl-tethered substrate 24 was rather unstable and likely to decompose partially during the workup. Thus, the tethered substrate 24, without purification, was immediately treated under the same radical reaction conditions, followed by desilylation with TBAF, which successfully improved the yield of the desired *C*-glycoside **25** (50% from **27**).

Conversion of **25** into the targets **9** and **10** was performed as shown in Scheme 6. After protection of the two free hydroxyls of **25** with benzyl groups, the *p*methoxybenzyl (PMB) groups and the isopropylidene group were removed with 90% TFA, and the resulting free hydroxyls were acetylated to give **34**. An adenine base was successfully introduced at the 1 β -position of **34**, using the usual Vorbrüggen glycosylation procedure¹⁸ with silylated *N*⁶-benzoyladenine and SnCl₄ in MeCN to give adenyl *C*-disaccharide **35** in 78% yield. Similarly, the corresponding uracil derivative **36** was also synthesized using the Vorbrüggen reaction with silylated uracil. The four acetyl groups of **35** were removed simultaneously, and the 6"-primary hydroxyl was selectively protected with a trityl group to give **37**. Phosphate units

⁽¹⁸⁾ Niedballa, U.; Vorbrüggen, H. J. Org. Chem. 1974, 39, 3654-3660.

⁽¹⁹⁾ Hattori, H.; Tanaka, M.; Fukushima, M.; Sasaki, T.; Matsuda, A. *J. Med. Chem.* **1996**, *39*, 5005–5011.

Scheme 5^a

^{*a*} Conditions: (a) (1) NaOMe, THF/MeOH, rt, (2) NaH, PMBCl, HMPA/DMF, rt, 77%; (b) (1) PhSeH, molecular sieves 3A, MeNO₂, reflux, (2) NaOMe, THF/MeOH, rt, 66%; (c) (1) NaOCMe₂Et, Ph₃PMeBr, THF, rt, 92%; (d) TBAF, THF, rt, 95%; (e) (1) **27**, Me₂SiCl₂, BuLi, THF, -78 °C to rt, (2) **30**, Et₃N, THF, 0 °C to rt; (f) (1) Bu₃SnH, AIBN, benzene, reflux, (2) TBAF, THF, **25** (50% from **27**), **31** (16% from **27**), **32** (11% from **27**).

31' (3 α , 1' β)

Figure 3.

were introduced, using the phosphoramidite method with *o*-xylene *N*,*N*-diethylphosphoramidite (XEPA) developed by Watanabe and co-workers.²⁰ Thus, **37** was treated with XEPA and tetrazole in CH_2Cl_2 , followed by oxidation with *m*-CPBA to give the desired 2',3",4"-trisphosphate derivative **39** in 92% yield. The *N*⁶-benzoyl group was removed with NH₃ in aqueous dioxane. Finally, the trityl and benzyl protecting groups were all removed in one step by catalytic hydrogenation with Pd-black in aqueous MeOH to give the target compound **9** in 85% yield as a sodium salt, after treatment with ion-exchange resin. The uracil congener **10** was also successfully synthesized from **36** by a similar procedure as shown in Scheme 6.

In summary, we have successfully synthesized the C-glycosidic adenophostin A (9) and its uracil congener 10, using a temporary silicon-tethered reductive coupling reaction as the key step. Biological evaluation is now in progress.

Experimental Section

 1 H, 13 C, and 31 P NMR spectra were recorded at 270 and 500 MHz (1 H), at 100 and 125 MHz (13 C), and at 67.5 MHz (31 P), respectively. Chemical shifts are reported in ppm downfield

^{*a*} Conditions: (a) BnBr, NaH, HMPA/DMF/THF, 0 °C to rt, 71%; (b) (1) 90% TFA, 0 °C to rt, (2) NaOMe, MeOH, rt, (3) Ac₂O, Et₃N, DMAP, MeCN, 70%; (c) silylated *N*⁶-benzoyladenine, SnCl₄, MeCN, 0 °C to rt, **35** (78%); (d) silylated uracil, TMSOTf, MeCN, 0 °C to rt, **36** (98%); (e) (1) NaOMe, MeOH, (2) TrCl, py, 0–50 °C, **37** (95%), **38** (92%); (f) XEPA, CH₂Cl₂, -40 °C, then *m*-CPBA, -40 °C to rt, **39** (92%), **41** (84%); (g) (1) NH₃, aqueous dioxane, rt, 89%; (h) H₂, Pd-black, aqueous MeOH, rt, 85%; (i) H₂, Pd-C, aqueous MeOH, rt, 85%.

from TMS (¹H and ¹³C) or H_3PO_4 (³¹P), and *J* values are given in hertz. The ¹H NMR assignments were in agreement with COSY spectra. Mass spectra were obtained by fast atom bombardment (FAB) methods. Thin-layer chromatography was done on Merck silica gel-coated plate $60F_{254}$. Silica gel chromatography was done on Merck silica gel 7734 or 9385. Reactions were carried out under an argon atmosphere.

Phenyl 3,4,6-Tri-O-benzyl-1-seleno-β-D-glucopyranoside (13). A mixture of **15**¹⁴ (24.5 g, 67.6 mmol) and NaOMe (28% in MeOH, 2.7 mL) in MeOH/THF (30 mL/70 mL) was

⁽²⁰⁾ Watanabe, Y.; Komoda, Y.; Ebisuya, K.; Ozaki, S. *Tetrahedron Lett.* **1990**, *31*, 255–256.

stirred at room temperature for 1 h. The reaction mixture was evaporated and azeotroped with toluene (three times). A solution of the residue in DMF (150 mL) was added to a suspension of NaH (60%, 13.5 g, 338 mmol) in DMF/HMPA (300 mL/100 mL) at 0 °C, and the mixture was stirred at room temperature for 30 min. BnBr (32 mL, 270 mmol) was added to the reaction mixture at 0 °C, and the resulting mixture was stirred at room temperature for 10 h. After addition of MeOH (20 mL) at 0 °C, the mixture was partitioned between AcOEt (700 mL) and H₂O (500 mL), and the organic layer was washed with H_2O (500 mL, twice) and brine (300 mL), dried (Na₂SO₄), and evaporated. The residue was purified by column chromatography (SiO₂, hexane/AcOEt, 4:1) to give 16 (27.7 g). A mixture of the obtained 16, PhSeH (8.5 mL, 54 mmol), and molecular sieves 3A powder (5.0 g) in CH₃NO₂ (75 mL) was heated under reflux for 6 h. The reaction mixture was partitioned between Et₂O (500 mL) and H₂O (400 mL), and the organic layer was washed with aqueous NaOH (1 M, 300 mL), H₂O (400 mL), aqueous NH₄Cl (saturated, 400 mL), and brine (300 mL), dried (Na₂SO₄), and evaporated to give crude 17. A mixture of the crude 17 and NaOMe (28% in MeOH, 2.0 mL) in THF/MeOH (20 mL/40 mL) was stirred at room temperature for 3 h and then evaporated. The residue was purified by flash column chromatography (SiO₂, hexane/AcOEt, 10:1-8:1) to give 13 (39 g, 59% from 15 as an oil): ¹H NMR (CDCl₃, 500 MHz) δ 7.69–7.65 (m, 2 H), 7.34–7.19 (m, 18 H), 4.89 (d, 1 H, J = 11.3), 4.83 (d, 1 H, J = 10.9), 4.81 (d, 1 H, J = 10.9), 4.72 (d, 1 H, J = 10.9), 4.60 (d, 1 H, J = 11.9 Hz), 4.56 (d, 1 H, J = 10.9), 4.53 (d, 1 H, J = 11.9), 3.78 (dd, 1 H, J = 2.0, 11.0, 3.74 (dd, 1 H, J = 4.1, 11.0), 3.6 (dd, 1 H, J =8.7, 8.9), 3.56 (dd, 1 H, J = 8.7, 8.7), 3.51 (m, 1 H), 3.48 (dd, 1 H, J = 8.9, 10.9); ¹³C NMR (125 MHz, CDCl₃) δ 129.03, 128.45, 128.35, 128.30, 127.94, 127.87, 127.73, 127.72, 127.58, 127.51, 126.63, 85.72, 84.70, 80.47, 77.28, 75.27, 75.01, 73.24, 69.93; FAB-LRMS m/z 591 (MH⁺). Anal. Calcd for C₃₃H₃₄O₅-Se: C, 67.23; H, 5.81. Found: C, 67.21; H, 5.81.

9-(2-O-tert-Butyldimethylsilyl-5-O-trityl-β-D-ribofuranosyl)adenine (18). A suspension of AgNO₃ (19.6 g, 116 mmol), TBSCl (23 g, 154 mmol), and 5'-O-trityladenosine²¹ (39.2 g, 77 mmol) in THF/pyridine (250 mL/220 mL)²² was stirred at room temperature for 15 h. After addition of MeOH (6.2 mL), the mixture was filtered through Celite, evaporated, and crystallized from hexane/AcOEt to give 18 (22.6 g). The mother liquid was evaporated and dissolved in Et₃N/MeOH (5 mL/100 mL). The mixture was stirred at room temperature for 24 h, evaporated, and crystallized from hexane/AcOEt to give further 18 (11.0 g): total 36.6 g, 66% as a white solid; ¹H NMR (CDCl₃, 270 MHz) δ 8.23 (s, 1 H), 7.98 (s, 1 H), 7.45-7.18 (m, 15 H), 5.99 (d, 1 H, J = 5.3), 5.54 (m, 2 H), 4.99 (dd, 1 H, J = 5.3, 5.3), 4.33 (m, 1 H), 4.24 (m, 1 H), 3. 51 (dd, 1 H, J = 3.3, 10.6), 3.37 (dd, 1 H, J = 4.0, 10.6), 2.69 (d, 1 H), 0.82 (s, 9 H), -0,03 (s, 3 H), -0.15 (s, 3 H); FAB-HRMS calcd for C₃₅H₄₂ N₅O₄Si 624.3006 (MH⁺), found 624.2999.

9-(2-O-tert-Butyldimethylsilyl-3-deoxy-3-methylene-5-**O-trityl-β-D-erythro-pentofuranosyl)adenine** (19). CrO₃ (12.4 g, 124 mmol) was slowly added to a solution of pyridine (30 mL, 272 mmol) in CH₂Cl₂ (200 mL) containing molecular sieves 4A (30 g) at 0 °C, and the mixture was stirred at room temperature for 30 min. After addition of Ac₂O (11.7 mL, 124 mmol), the mixture was stirred at room temperature for 30 min. A solution of $\boldsymbol{18}$ (15.5 g, 24.8 mmol) in CH_2Cl_2 (150 mL) was slowly added to the mixture at 0 °C, and the resulting mixture was stirred at room temperature for 2 h. The mixture was partitioned between CHCl₃ (300 mL) and H₂O (400 mL), and the organic layer was washed with H₂O (400 mL) and brine (300 mL), dried (Na₂SO₄), and evaporated. The residue was purified by column chromatography (SiO₂, hexane/AcOEt, 1:2-1:10) to give 2'-O-TBS-5'-O-trityl-3'-ketoadenosine (16 g). After a mixture of NaOCMe2Et (95%, 8.94 g, 77 mmol) and Ph₃PMeBr (30.3 g, 84.8 mmol) in THF (350 mL) was stirred at room temperature for 2 h, a solution of the obtained 2'-O-TBS-5'-O-trityl-3'-ketoadenosine in THF (80 mL) was added at -78 °C, and the resulting mixture was warmed to 0 °C over 1 h and stirred at the same temperature for 48 h. After addition of aqueous NH₄Cl (saturated, 50 mL), the reaction mixture was partitioned between AcOEt (500 mL) and H₂O (300 mL), and the organic layer was washed with H₂O (300 mL) and brine (300 mL), dried (Na₂SO₄), and evaporated. The residue was purified by column chromatography (SiO₂, hexane/ AcOEt, 1:1) to give **19** (9.2 g, 72% as a white solid): ¹H NMR (CDCl₃, 270 MHz) & 8.25 (s, 1 H), 7.98 (s, 1 H), 7.46-7.17 (m, 15 H), 5.85 (d, 1 H, J = 6.6), 5.53 (br s, 2 H), 5.36 (m, 1 H) 5.28 (m, 1 H), 5.12 (m, 1 H), 4.80 (m, 1 H), 3.45 (dd, 1 H, J= 5.3, 10.6) 3.35 (dd, 1 H, J = 3.3, 10.6), 0.78 (s, 9 H), -0.05 (s, 3 H), -0.38 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 164.46, 152.66, 151.80, 149.41, 146.73, 143.35, 141.31, 133.53, 132.47, 128.58, 128.46, 128.15, 127.69, 127.66, 127.02, 122.92, 109.14, 88.07, 86.92, 79.96, 77.22, 76.39, 66.20, 25.42, 17.79, -4.88,-5.28; FAB-HRMS calcd for C₃₆H₄₂N₅O₃Si 620.3057 (MH⁺), found 620.3043. Anal. Calcd for $C_{36}H_{41}N_5O_3Si:$ C, 69.76; H, 6.67; N, 11.30. Found: C, 69.74; H, 6.69; N, 10.91.

N⁶-Benzoyl-9-(2-*O-tert*-butyldimethylsilyl-3-deoxy-3methylene-5-*O*-trityl-β-D-*erythro*-pentofuranosyl)adenine (20). A mixture of 19 (7.74 g, 12.5 mmol), BzCl (5.8 mL, 50 mmol), and DMAP (150 mg, 1.2 mmol) in pyridine (70 mL) was stirred at room temperature for 2 h. After addition of aqueous NH₃ (25%, 20 mL), the mixture was stirred at 0 $^{\circ}$ C for 10 min and evaporated. The residue was purified by column chromatography (SiO₂, hexane/AcOEt, 3:2) to give **20** (8.56 g, 95% as a white amorphous solid): ¹H NMR (CDCl₃, 270 MHz) δ 9.02 (br s, 1 H), 8.75 (s, 1 H), 8.21 (s, 1 H), 8.05-7.19 (m, 20 H), 6.08 (m, 1 H), 5.96 (d, 1 H, J = 2.3), 5.34 (dd, 1 H, J = 2.3, 2.3), 5.18 (dd, 1 H, J = 2.0, 2.0), 4.86 (m, 1 H), 3.50 (dd, 1 H, J = 4.6, 10.2, 3.41 (dd, 1 H, J = 3.3, 10.2), 0.80 (s, 9 H), -0.03 (s, 3 H), -0.39 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 164.56, 152.28, 150.50, 150.27, 146.37, 142.56, 133.34, 132.67, 128.62, 127.81, 123.95, 108.61, 91.35, 82.87, 74.71, 65.56, 25.44, 17.74, -4.90, -5.54; FAB-HRMS calcd for C43H46N5O4Si 724.3319 (MH⁺), found 724.3378. Anal. Calcd for C43H45N5O4Si· 1.5H₂O: C, 68.77; H, 6.44; N, 9.33. Found: C, 68.90; H, 6.11; N, 9.45.

N⁶-Benzoyl-9-(2-O-tert-butyldimethylsilyl-3-deoxy-3**methylene**-β-D-*erythro*-pentofuranosyl)adenine (14). To a solution of 20 (4.0 g, 6.45 mmol) in CHCl₃ (100 mL) was added aqueous TFA (80%, 10 mL) at 0 °C, and the resulting mixture was stirred at room temperature for 15 min. The reaction mixture was partitioned between CHCl₃ (150 mL) and H_2O (70 mL), and the organic layer was washed with H_2O (70 mL, twice), aqueous NaHCO₃ (saturated, 70 mL), and brine (70 mL), dried (Na₂SO₄), and evaporated. The residue was purified by column chromatography (SiO₂, hexane/AcOEt 1:3) to give 14 (2.6 g, 84% as a white amorphous solid): ¹H NMR (CDCl₃, 270 MHz) & 9.17 (br s, 1 H, NH), 8.85 (s, 1 H, H-2), 8.03 (s, 1 H, H-8), 8.06-7.46 (m, 5 H, Ar), 5.72 (m, 1 H, 5'-OH), 5.60 (d, 1 H, H-1', J = 7.6), 5.45 (m, 1 H, H-2'), 5.34 (m, 1 H, =CHaHb), 5.28 (m, 1 H, =CHaHb), 4.83 (m, 1 H, H-4'), 4.06 (m, 1 H, H-5'a), 3.72 (m, 1 H, H-5'b), 0.81 (s, 9 H, tBu), -0.09 (s, 3 H, Me), -0.53 (s, 3 H, Me); FAB-HRMS calcd for C24H32N5O4Si 482.2223 (MH+), found 482.2209. Anal. Calcd for $C_{24}H_{31}N_5O_4Si$: C, 59.85; H, 6.49; N, 14.54. Found: C, 59.77; H, 6.55; N, 14.44.

N⁶-Benzoyl-9-[3-deoxy-3-(4,5,7-tri-*O*-benzyl-2,6-anhydro-**1-deoxy-**D-*glycero*-D-*ido*-heptitol-1-yl)-β-D-*xylo*-pentofuranosyl]adenine (21), *N*⁶-benzoyl-9-[3-deoxy-3-(4,5,7-tri-*O*benzyl-2,6-anhydro-1-deoxy-D-*glycero*-D-*gulo*-heptitol-1yl)-β-D-*xylo*-pentofuranosyl]adenine (22), and 1-Deoxy-3,4,6-tri-*O*-benzyl-D-glucopyranose (23). BuLi (1.50 M in hexane, 150 μ L, 225 μ mol) was slowly added to a solution of 13 (120 mg, 204 μ mol) in THF (5 mL) at -78 °C, and after the resulting mixture was stirred at the same temperature for 5 min, Me₂SiCl₂ (173 μ L, 1430 μ mol) was added. The mixture was warmed to room temperature over 6 h, and the solvent was removed with argon stream. After the resulting oil was dried in vacuo at room temperature for 2 h, a solution of 14 (108 mg, 224 μ mol) in THF (1 mL) and Et₃N (125 μ L, 896

⁽²¹⁾ Blank, H. U.; Frahne, D.; Myles, A.; Pfleiderer, W. Justus Liebigs Ann. Chem. 1970, 742, 34-42.

⁽²²⁾ Hakimelahi, G. H.; Proba, Z. A.; Ogilvie, K. K. *Tetrahedron Lett.* **1981**, *22*, 4775–4778.

 μ mol) was added to a solution of the above residue in THF (4 mL) at 0 °C, and the mixture was stirred at room temperature for 1 h. The resulting mixture was partitioned between AcOEt (50 mL) and aqueous NaHCO₃ (saturated, 70 mL), and the organic layer was washed with aqueous NaHCO₃ (saturated, 70 mL) and brine (70 mL), dried (Na₂SO₄), and evaporated to give 12, which was used for the next reaction without purification due to its instability. To a solution of the obtained 12 in benzene (19 mL) was added a solution of Bu₃SnH (71 μ L, 266 μ mol) and AIBN (15 mg, 93 μ mol) in benzene (5 mL) at 80 °C slowly over 1.2 h, and then the resulting mixture was evaporated. A mixture of the resulting residue and TBAF (1 M in THF, 532 μ L, 532 μ mol) was stirred at room temperature for 1 h and then evaporated. The residue was purified by column chromatography (SiO₂, CHCl₃/MeOH, 50:1-10:1) to give 23 (14 mg, 25% as a white solid) and a mixture of 21 and **22** (57 mg, 35% as an oil, **21/22** = 28:72). For **21** (3' β ,1" α): ¹H NMR (CD_3OD , 400 MHz) δ 8.68 (s, 1 H, H-2), 8.65 (s, 1 H, H-8), 8.08 (m, 2 H, Ar), 7.65 (m, 1 H, Ar), 7.55 (m, 2 H, Ar), 7.24 (m, 15 H, Ar), 5.91 (d, 1 H, H-1', J = 7.0), 4.88 (m, 1 H, Ph*CH*₂), 4.81 (dd, 1 H, H-2', *J* = 7.0, 10.3), 4.73 (d, 1 H, Ph*CH*₂, J = 4.7), 4.71 (d, 1 H, Ph*CH*₂, J = 4.7), 4.47 (m, 3 H, Ph*CH*₂), 4.37 (m, 1 H, H-4'), 4.05 (m, 1 H, H-1"), 3.83 (m, 4 H, H-2", H-5", H-5'a, H-5'b), 3.72 (dd, 1 H, H-4", J = 7.9, 7.9), 3.63 (m, 2 H, H-6"a, H-6"b), 3.44 (dd, 1 H, H-3", J = 7.9, 7.9), 2.69 (m, 1 H, H-3'), 2.34 (m, 1 H, 3'-CHaHb), 2.14 (m, 1 H, 3'-CHaHb); FAB-HRMS calcd for $C_{45}H_{48}N_5O_9$ 802.3415 (MH+), found 802.3397. For **22** (3' β ,1" β): ¹H NMR (CD₃OD, 400 MHz) δ 8.66 (s, 2 H, H-2, H-8), 8.07-7.14 (m, 20 H, Ar), 5.89 (d, 1 H, H-1', J = 7.0), 4.96 (d, 1 H, Ph*CH*₂, J = 11.1), 4.79 (d, 1 H, Ph*CH*₂, J = 11.1), 4.75 (d, 1 H, Ph*CH*₂, J = 10.9), 4.73 (dd, 1 H, H-2', J = 7.0, 10.6), 4.51 (d, 1 H, Ph*CH*₂, J = 11.1), 4.44 (m, 3 H, H-4′, Ph*CH*₂), 3.97 (d, 1 H, H-5′a, *J* = 11.0), 3.81 (d, 1 H, H-5′b, J = 11.0), 3.65 (d, 1 H, H-6"a, J = 9.7), 3.58 (dd, 1 H, H-6"b, J = 4.4, 10.6), 3.48 (m, 2 H, H-2", H-5"), 3.41 (m, 1 H, H-1"), 3.36 (m, 2 H, H-3", H-4"), 2.66 (m, 1 H, H-3'), 2.39 (dd, 1 H, 3'-CHaHb, J = 4.7, 14.4), 1.88 (m, 1 H, 3'-CHaHb); FAB-HRMS calcd for C45H48N5O9 802.3415 (MH+), found 802.3384. For 23: ¹H NMR (CDCl₃, 500 MHz) δ 7.37-7.16 (m, 15 H, Ar), 4.95 (m,1 H, PhCH2), 4.77 (m, 2 H, PhCH2), 4.61 (m, 1 H, Ph*CH*₂), 4.53 (m, 2 H, Ph*CH*₂), 4.01 (dd, 1 H, H-1a, *J* = 5.4, 11.2), 3.70 (m, 3 H, H-2, H-6a, H-6b), 3.59 (dd, 1 H, H-4, J= 9.2, 9.2), 3.45 (dd, 1 H, H-3, J = 9.2, 9.2), 3.41 (ddd, 1 H, H-5, J = 2.3, 3.9, 9.2), 3.21 (dd, 1 H, H-1b, J = 11.2, 11.2), 2.10 (d, 1 H, 2-OH, J = 3.2); FAB-HRMS calcd for C₂₇H₃₁O₅ 435.2171 (MH⁺), found 435.2165.

Nº-Dibenzoyl-9-[2-O-benzoyl-3-deoxy-3-(3-O-benzoyl-4,5,7-tri-O-benzyl-2,6-anhydro-1-deoxy-D-glycero-D-idoheptitol-1-yl-β-D-xylo-pentofuranosyl]adenine (21'). A solution of 21 (24 mg, 30 μ mol), BzCl (35 μ L, 300 μ mol), and DMAP (1 mg, 8 µmol) in pyridine (1 mL) was stirred at room temperature for 1 h. The resulting mixture was partitioned between AcOEt (8 mL) and aqueous NaHCO₃ (saturated, 6 mL), and the organic layer was washed with aqueous NaHCO₃ (saturated, 6 mL) and brine (7 mL), dried (Na₂SO₄), and evaporated. The residue was purified by column chromatography (SiO₂, hexane/AcOEt 2:1) to give 21' (26 mg, 71% as a white solid): ¹H NMR (CDCl₃, 500 MHz) & 8.48 (s, 1 H, H-2), 8.30 (s, 1 H, H-8), 8.10-7.10 (m, 40 H, Ar), 6.31 (dd, 1 H, H-2', J = 5.7, 7.7), 6.19 (d, 1 H, H-1', J = 5.7), 5.28 (dd, 1 H, H-2", J = 4.9, 7.5, 4.77 (m, 1 H, H-4'), 4.72 (d, 1 H, Ph*CH*₂, J =11.3), 4.67 (d, 1 H, Ph*CH*₂, *J* = 11.3), 4.65 (d, 1 H, Ph*CH*₂, *J* = 11.3), 4.62 (dd, 1 H, H-5'a, J = 3.3, 12.4), 4.52 (m, 2 H, H-1" Ph*CH*₂), 4.44 (m, 2 H, Ph*CH*₂), 4.41 (dd, 1 H, H-5'b, *J* = 4.5, 12.4), 3.92 (dd, 1 H, H-3", J = 7.5, 7.5), 3.82 (m, 1 H, H-5"), 3.75 (dd, 1 H, H-6"a, J = 5.6, 10.6), 3.65 (dd, 1 H, H-4", J = 7.5, 7.5), 3.62 (dd, 1 H, H-6"b, J = 2.6, 10.6), 3.21 (m, 1 H, H-3'), 2.77 (m, 1 H, 3'-CHaHb), 2.00 (m, 1 H, 3'-CHaHb); FAB-HRMS calcd for C₇₃H₆₃N₅O₁₃Na 1240.4320 (MNa⁺), found 1240.4340. NOE experiments were carried out in CDCl3 at 400 MHz.

 N^6 -Dibenzoyl-9-[2-*O*-benzoyl-3-deoxy-3-(3-*O*-benzoyl-4,5,7-tri-*O*-benzyl-2,6-anhydro-1-deoxy-D-*glycero*-D-*gulo*heptitol-1-yl)-β-D-xylo-pentofuranosyl]adenine (22'). Compound 22' was prepared from 22 (10 mg, 12 μmol) by the procedure described for the synthesis of **21**′. The resulting residue was purified by column chromatography (SiO₂, hexane/AcOEt 2:1) to give **22**′ (13 mg, 89% as a white solid): ¹H NMR (CDCl₃, 500 MHz) δ 8.32 (s, 1 H, H-2), 8.19 (s, 1 H, H-8), 7.98–7.06 (m, 40 H, Ar), 6.22 (m, 2 H, H-1′, H-2′), 5.20 (dd, 1 H, H-2″, J = 9.2, 9.2), 4.83 (m, 1 H, H-4′), 4.77 (d, 1 H, Ph*CH*₂, J = 10.8), 4.73 (m, 2 H, H-5′a, Ph*CH*₂), 4.65 (d, 1 H, Ph*CH*₂, J = 11.3), 4.61 (d, 1 H, Ph*CH*₂, J = 11.1), 4.54 (dd, 1 H, H-5′b, J = 5.6, 12.3), 4.51 (d, 1 H, Ph*CH*₂, J = 11.8), 4.46 (s, 2 H, Ph*CH*₂), 3.76 (dd, 1 H, H-3″, J = 9.2, 9.2), 3.72 (dd, 1 H, H-4″, J = 9.2, 9.2), 3.65 (m, 2 H, H-1″, H-6″a), 3.57 (dd, 1 H, H-6″b), J = 5.0, 10.6), 3.48 (m, 1 H, H-5″), 3.19 (m, 1 H, H-4″), 2.11 (m, 1 H, *CHa*Hb), 1.96 (m, 1 H, *CHaHb*); FAB-HRMS calcd for C₇₃H₆₃N₅O₁₃Na 1240.4320 (MH⁺), found 1240.4310. NOE experiments were carried out in CDCl₃ at 400 MHz.

3,4,6-Tri-*O*-*p*-methoxybenzyl-1,2-*O*-(1-methoxyethylidene)- α -D-glucopyranose (26). Compound 26 was prepared from 15¹⁴ (15.4 g, 42 mmol) by the procedure described for the synthesis of 16 with PMBCl (17.6 mL, 174 mmol) instead of BnBr. The resulting residue was purified by column chromatography (SiO₂, hexane/AcOEt, 4:1–2.5:1) to give 26 (19.3 g, 77% as an oil): ¹H NMR (CDCl₃, 400 MHz) δ 7.31– 6.76 (m, 12 H), 6.60 (m, 1 H), 4.64–4.29 (m, 7 H), 3.84–3.56 (m, 14 H), 3.28 (m, 3 H), 2.04 (m, 3 H); FAB-HRMS calcd for C₃₃H₄₁O₁₀ 597.2699 (MH⁺), found 597.2675.

Phenyl 3,4,6-Tri-*O*-*p*-methoxybenzyl-1-seleno-β-D-glucopyranoside (27). Compound 27 was prepared from 26 (4.28 g, 7.17 mmol) by the procedure described for the synthesis of 13. The resulting residue was purified by column chromatography (SiO₂, hexane/AcOEt, 4:1-3:2) to give 27 (3.24 g, 66% as a white solid): ¹H NMR (CDCl₃, 400 MHz) δ 7.31–6.81 (m, 17 H, Ar), 4.80 (d, 1 H, Ph*CH*₂, *J* = 11.0), 4.77 (d, 1 H, Ph*CH*₂, J = 11.0), 4.72 (d, 1 H, Ph*CH*₂, J = 11.3), 4.70 (m, 1 H, H-1), 4.54 (d, 1 H, Ph*CH*₂, *J* = 11.3), 4.45 (m, 2 H, Ph*CH*₂), 3.78 (m, 9 H, 3 x OCH₃), 3.72-3.45 (m, 6 H, H-2, H-3, H-4, H-5, H-6a, H-6b); ¹³C NMR (CDCl₃ 100 MHz) δ 158.96, 158.94, 158.82, 134.80, 130.40, 130.11, 130.01, 129.40, 129.37, 129.11, 128.81, 127.97, 126.60, 113.72, 113.58, 113.53, 85.32, 84.56, 80.40, 76.95, 74.85, 74.57, 73.09, 72.94, 68.45, 55.20; FAB-HRMS calcd for C₃₆H₄₁O₈Se 681.1966 (MH⁺), found 681.1968. Anal. Calcd for C₃₆H₄₀O₈Se: C, 63.62; H, 5.93. Found: C, 63.46; H, 6.02

5-O-tert-Butyldimethylsilyl-3-deoxy-3-methylene-1,2-O-(1-methylethylidene)-α-D-erythro-pentofuranose (29). After a mixture of NaOCMe₂Et (95%, 2.72 g, 23.5 mmol) and Ph₃PMeBr (8.67 g, 24.3 mmol) in THF (150 mL) was stirred for 2 h, a solution of **28**¹⁹ (2.37 g, 7.83 mmol) in THF (30 mL) was added at -78 °C, and the reaction mixture was warmed to room temperature over 6 h and stirred for 3 h at the same temperature. After addition of aqueous NH₄Cl (saturated, 10 mL), the reaction mixture was partitioned between Et₂O (300 mL) and H_2O (200 mL), and the organic layer was washed with H₂O (200 mL) and brine (150 mL), dried (Na₂SO₄), and evaporated. The residue was purified by column chromatography (SiO₂, hexane/AcOEt, 5:1) to give **29** (2.16 g, 92% as an oil): ¹H NMR (CDCl₃, 270 MHz) δ 5.83 (d, 1 H, J = 4.4), 5.40 (m, 1 H), 5.24 (m, 1 H), 4.86 (m, 1 H), 4.73 (m, 1 H), 3.73 (dd, 1 H, J = 4.0, 10.7), 3.65 (dd, 1 H, J = 4.0, 10.7), 1.48 (s, 3 H), 1.37 (s, 3 H), 0.86 (s, 9 H), 0.03 (s, 6 H); ¹³C NMR (CDCl₃, 67.5 MHz) δ 147.25, 112.12, 111.21, 104.69, 81.76, 80.63, 65.57, 27.51, 27.26, 25.80, -5.37, -5.43; FAB-LRMS m/z 301 (C15H29O4-Si); FAB-HRMS calcd for C15H29O4Si 301.1835 (MH+), found 301.1847.

3-Deoxy-3-methylene-1,2-*O*-(1-methylethylidene)-α-D*erythro*-pentofuranose (30). A mixture of 29 (15 g, 50 mmol) and TBAF (1 M in THF, 55 mL, 55 mmol) in THF (100 mL) was stirred at room temperature for 1 h and then evaporated. The resulting residue was purified by column chromatography (SiO₂, CHCl₃/EtOH, 30:1) to give 30 (8.84 g, 95% as an oil): ¹H NMR (CDCl₃, 400 MHz) δ 5.87 (d, 1 H, H-1, *J* = 4.1), 5.48 (m, 1 H, =*CHa*Hb), 5.19 (m, 1 H, =*CHaHb*), 4.92 (dd, 1 H, H-2, *J* = 0.9, 4.1), 4.83 (m, 1 H, H-4), 3.88 (dd, 1 H, H-5a, *J* = 2.3, 12.0), 3.67 (dd, 1 H, H-5b, *J* = 4.7, 12.0), 1.52 (s, 3 H, CH₃), 1.39 (s, 3 H, CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ 145.27, 112.23, 111.85, 104.11, 81.74, 79.92, 63.30, 27.31, 27.04; FAB- HRMS calcd for $C_9H_{13}O_4$ 185.0814, found 185.0815 [(M – H)⁺]. Anal. Calcd for $C_9H_{14}O_4$: C, 58.05; H, 7.58. Found: C, 57.78; H, 7.50.

Dimethylsilyl-Tethered Substrate (24). BuLi (1.55 M in hexane, 4.33 mL, 6.71 mmol) was slowly added to a solution of 27 (5.73 g, 6.39 mmol) in THF (100 mL) at -78 °C, and after the resulting mixture was stirred at the same temperature for 5 min, Me₂SiCl₂ (5.43 mL, 44.8 mmol) was added. The mixture was warmed to room temperature over 6 h, and the solvent was removed with argon stream. After the resulting oil was dried in vacuo at room temperature for 5 h, a solution of 30 (1.43 g, 7.68 mmol) in THF (10 mL) and Et₃N (3.56 mL, 25.5 mmol) was added to a solution of the residue in THF (90 mL) at 0 °C, and the mixture was stirred at room temperature for 2 h. The resulting mixture was partitioned between Et₂O (400 mL) and aqueous NaHCO₃ (saturated, 300 mL), and the organic layer was washed with aqueous NaHCO₃ (saturated, 300 mL) and brine (200 mL), dried (Na₂SO₄), and evaporated. The resulting residue was purified by flash column chromatography (SiO₂, hexane/AcOEt, 3.5:1) to give 24 (3.95 g, 67% as an oil): ¹H NMR (CDCl₃, 500 MHz) δ 7.66–6.77 (m, 17 H, Ar), 5.82 (d, 1 H, H-1, J = 4.1), 5.36 (m, 1 H, CHaHb), 5.16 (m, 1 H, CHaHb), 4.81 (m, 5 H, H-2, H-4, H-1', PhCH2), 4.65-4.43 (m, 4 H, Ph*CH*₂), 3.93 (dd, 1 H, H-5a, J = 3.8, 11.2), 3.80-3.73 (m, 10 H, H-5b, 3 x OCH₃), 3.71 (dd, 1 H, H-6'a, J = 1.8, 11.0, 3.66 (dd, 1 H, H-6'b, J = 4.5, 11.0), 3.59 (dd, 1 H, H-4', J = 9.5, 9.5), 3.48 (m, 1 H, H-2'), 3.47 (dd, 1 H, H-3', J= 9.5, 9.5), 3.42 (m, 1 H, H-5'), 1.47 (s, 3 H, CH₃), 1.37 (s, 3 H, CH₃), 0.49 (s, 3 H, SiCH₃), 0.13 (s, 3 H, SiCH₃); FAB-HRMS calcd for C47H58O12SeSiNa 945.2760 (MNa+), found 945.2824. Anal. Calcd for C47H58O12SeSi: C, 61.23; H, 6.34. Found: C, 61.08; H, 6.44.

3-Deoxy-3-(4,5,7-tri-O-p-methoxybenzyl-2,6-anhydro-1deoxy-D-glycero-D-ido-heptitol-1-yl)-1,2-O-(1-methylethylidene)-a-D-ribo-pentofuranose (25) and 3-Deoxy-3-(4,5,7tri-O-p-methoxybenzyl-2,6-anhydro-1-deoxy-D-glycero-Dgulo-heptitol-1-yl)-1,2-O-(1-methylethylidene)-a-D-ribopentofuranose (31), and 1-Deoxy-3,4,6-tri-*O-p*-methoxybenzyl-D-glucopyranose (32). To a solution of 24 (100 mg, 108 μ mol) in benzene (15 mL) was added a solution of Bu₃-SnH (58 μ L, 216 μ mol) and AIBN (9 mg, 55 μ mol) in benzene (5 mL) slowly over 1.2 h at 80 °C, and then the resulting mixture was evaporated. A mixture of the resulting residue and TBAF (1 M in THF, 270 µL, 270 µmol) was stirred at room temperature for 1 h and evaporated. The residue was purified by column chromatography (SiO₂, CHCl₃/AcOEt, 2.5:1-1:4) to give 32 (14 mg, 25% as a solid) and a mixture of 25 and 31 (55 mg, 72% as an oil, 25/31 = 70:30). From the mixture, 25 (38 mg, 50%) and 31 (16 mg, 22%) were obtained in a pure form by flash column chromatography (SiO2, hexane/AcOEt 5:1-2:1). For 25: ¹H NMR (CDCl₃, 500 MHz) δ 7.28-6.81 (m, 12 H, Ar), 5.74 (d, 1 H, H-1, J = 3.6), 4.65 (dd, 1 H, H-2, J =4.1, 4.1), 4.60 (d, 1 H, Ph*CH*₂, J = 11.3), 5.69–4.40 (m, 5 H, PhCH₂), 4.04 (m, 1 H, H-1'), 3.93 (m, 1 H, H-5'), 3.89-3.83 (m, 3 H, H-4, H-6'a, H-6'b), 3.82 (s, 3 H, OCH₃), 3.81 (s, 3 H, OCH₃), 3.79 (s, 3 H, OCH₃), 3.69 (dd, 1 H, H-3', J = 5.6, 5.6), 3.65 (m, 2 H, H-2', H-5a), 3.50 (dd, 1 H, H-5b, J = 4.0, 10.4), 3.46 (dd, 1 H, H-4', J = 5.6, 5.6), 2.93 (m, 1 H, 2'-OH), 2.16 (m, 1 H, H-3), 1.77 (m, 2 H, CH₂), 1.48 (s, 3 H, CH₃), 1.30 (s, 3 H, CH₃); ¹³C NMR (CDCl₃, 100 MHz) δ 159.23, 159.18, 159.10, 129.96, 129.70, 129.55, 129.51, 129.28, 129.23, 113.84, 113.74, 113.68, 111.43, 104.89, 82.58, 82.38, 81.45, 81.27, 74.82, 73.28, 72.85, 72.73, 70.13, 69.95, 61.35, 55.45, 55.44, 55.40, 55.29, 55.25, 55.11, 39.88, 26.99, 26.91, 26.55, 23.46; FAB-HRMS calcd for C₃₉H₅₀O₁₂Na 733.3200 (MNa⁺), found 733.3187. Anal. Calcd for C₃₉H₅₀O₁₂·H₂O: C, 64.27; H, 7.19. Found: C, 64.27; H, 7.21. For 31: 1H NMR (CDCl₃, 500 MHz) δ 7.29–6.81 (m, 12 H, Ar), 5.78 (d, 1 H, H-1, J = 3.2), 4.87 (m, 1 H, PhCH₂), 4.71 (m, 2 H, PhCH₂), 4.66 (dd, 1 H, H-4, J = 3.2, 3.2), 4.56-4.35 (m, 4 H, PhCH2, H-5a), 3.84 (m, 3 H, H-2, H-5a, H-6'a), 3.78 (m, 9 H, 3 x OCH₃), 3.59 (m, 2 H, H-5', H-6'a), 3.49 (m, 1 H, H-4'), 3.42 (m, 1 H, 2-OH), 3.41 (m, 1 H, H-3'), 3.29 (m, 1 H, H-2'), 3.24 (m, 1 H, H-1'), 2.29 (m, 1 H, H-3), 1.90 (m, 2 H, CH2), 1.48 (s, 3 H, CH3), 1.30 (s, 3 H, CH3); FAB-HRMS calcd for C₃₉H₅₀O₁₂Na 733.3200 (MNa⁺), found

733.3245. For **32**: ¹H NMR (CDCl₃, 500 MHz) δ 7.29–6.81 (m, 12 H, Ar), 4.89 (m, 1 H, Ph*CH*₂), 4.69 (m, 2 H, Ph*CH*₂), 4.56 (m, 1 H, Ph*CH*₂), 4.43 (m, 2 H, Ph*CH*₂), 4.00 (dd, 1 H, H-1a, J = 5.3, 11.1), 3.80 (s, 3 H, OCH₃), 3.79 (s, 3 H, OCH₃), 3.78 (s, 3 H, OCH₃), 3.65 (m, 3 H, H-2, H-6a, H-6b), 3.52 (dd, 1 H, H-4, J = 9.3, 9.3), 3.39 (dd, 1 H, H-3, J = 9.3, 9.3), 3.36 (m, 1 H, H-5), 3.18 (dd, 1 H, H-1b, J = 11.1, 11.1), 2.07 (s, 1 H, 2-OH); FAB-HRMS calcd for C₃₀H₃₆O₈Na 547.2308 (MNa⁺), found 547.2287.

One-Pot Procedure for the Synthesis of 25 from 27 and 30. From **27** (800 mg, 1.34 mmol) and **30** (274 mg, 1.47 mmol) by the one-pot procedure described for the synthesis of **21** and **22**, **25** (472 mg, 50%), **31** (153 mg, 16%), and **32** (77 mg, 11%) were obtained, after purification by flash column chromatography (SiO₂, hexane/AcOEt 2.5:1-2:1-1:2).

5-O-Benzoyl-3-deoxy-3-(3-O-benzoyl-4,5,7-tri-O-p-methoxybenzyl-2,6-anhydro-1-deoxy-D-glycero-D-ido-heptitol-1-yl)-1,2-O-(1-methylethylidene)-α-D-ribo-pentofuranose (25'). A solution of 25 (206 mg, 290 µmol), Bz₂O (262 mg, 1.16 mmol), DMAP (3.5 mg, 29 $\mu mol)$, and Et_3N (162 μL , 1.16 mmol) in CH₃CN (3 mL) was stirred at room temperature for 30 min. The resulting mixture was partitioned between AcOEt (25 mL) and aqueous NaHCO₃ (saturated, 20 mL), and the organic layer was washed with aqueous NaHCO₃ (saturated, 20 mL) and brine (20 mL), dried (Na₂SO₄), and evaporated. The residue was purified by column chromatography (SiO₂, hexane/AcOEt 2:1) to give 25' (213 mg, 81% as a white solid): ¹H NMR (CDCl₃, 500 MHz) & 8.00 (m, 4 H, Ar), 7.60-7.32 (m, 6 H, Ar), 7.25-7.00 (m, 6 H, Ar), 6.90-6.70 (m, 6 H, Ar), 5.75 (d, 1 H, H-1, J = 3.7), 5.31 (dd, 1 H, H-2', J = 5.5, 8.6), 4.67 (m, 4 H, H-2, PMB-CH2), 4.51 (m, 1 H, H-5a), 4.50 (d, 1 H, PMB-*CH*₂, *J* = 11.3), 4.44 (m, 2 H, H-1', H-5b), 4.37 (d, 1 H, PMB-CH₂, J = 10.6), 4.32 (d, 1 H, PMB-CH₂, J = 11.7), 4.09 (ddd, 1 H, H-4, J = 2.8, 4.5, 10.2), 3.88 (dd, 1 H, H-3', J = 8.0, 8.0), 3.79 (s, 3 H, OCH₃), 3.77 (s, 3 H, OCH₃), 3.73 (s, 3 H, OCH₃), 3.67 (m, 2 H, H-4', H-5'), 3.64 (m, 1 H, H-6'a), 3.48 (d, 1 H, H-6'b, J = 9.9), 2.14 (m, 1 H, H-3), 1.93 (m, 1 H, 3-CHaHb), 1.83 (m, 1 H, 3-CHaHb), 1.21 (s, 3 H, CH₃), 1.15 (s, 3 H, CH₃); FAB-HRMS calcd for C₅₃H₅₈O₁₄Na 941.3724 (MNa⁺), found 941.3728. Anal. Calcd for C₅₃H₅₈O₁₄: C, 69.27; H, 6.36. Found: C, 69.07; H, 6.50. GOESY spectrum was measured in CDCl₃ at 400 MHz.

5-O-Benzoyl-3-deoxy-3-(3-O-benzoyl-4,5,7-tri-O-p-methoxybenzyl-2,6-anhydro-1-deoxy-D-glycero-D-gulo-heptitol-1-yl)-1,2-O-(1-methylethylidene)-α-D-ribo-pentofuranose (31'). Compound 31' was prepared from 31 (202 mg, 284 μ mol) by the procedure described for the synthesis of **25**'. The resulting residue was purified by column chromatography (SiO₂, hexane/AcOEt 2:1) to give **31**' (204 mg, 78% as a white solid): ¹H NMR (CDCl₃, 500 MHz) δ 8.00 (m, 4 H, Ar), 7.55 (m, 2 H, Ar), 7.42 (m, 4 H, Ar), 7.22 (d, 2 H, Ar), 7.05 (m, 4 H, Ar), 6.84 (m, 4 H, Ar), 6.61 (m, 2 H, Ar), 5.75 (d, 1 H, H-1, J = 3.6), 5.13 (dd, 1 H, H-2', J = 9.4, 9.4), 4.72 (dd, 1 H, H-2, J = 3.9, 3.9), 4.67 (m, 2 H, PMB-*CH*₂), 4.55 (dd, 1 H, H-5a, J =2.0, 12.2), 4.53 (d, 1 H, PMB-CH₂, J = 10.9), 4.50-4.36 (m, 3 H, PMB-*CH*₂), 4.27 (dd, 1 H, H-5b, J = 5.3, 12.4), 4.11 (m, 1 H, H-4), 3.79 (s, 3 H, OCH₃), 3.78 (s, 3 H, OCH₃), 3.73 (m, 1 H, H-6'a), 3.72 (dd, 1 H, H-3', J = 9.2, 9.2), 3.68 (s, 3 H, OCH₃), 3.63 (dd, 1 H, H-4', J = 9.2, 9.2), 3.59 (m, 1 H, H-6'b), 3.55 (ddd, 1 H, H-1', J = 3.0, 9.3, 9.3), 3.46 (m, 1 H, H-5'), 2.13 (m, 1 H, H-3), 2.03 (ddd, 1 H, 3-CHaHb J = 9.2, 9.2, 13.5), 1.72 (ddd, 1 H, 3-CHaHb, J = 3.2, 3.2, 14.6), 1.38 (s, 3 H, CH₃), 1.23 (s, 3 H, CH₃); FAB-HRMS calcd for C₅₃H₅₈O₁₄Na 941.3724 (MNa⁺), found 941.3713. Anal. Calcd for C₅₃H₅₈O₁₄: C, 69.27; H, 6.36. Found: C, 69.21; H, 6.42. GOESY spectrum was measured in CDCl₃ at 400 MHz.

5-*O*-Benzyl-3-deoxy-3-(3-*O*-benzyl-4,5,7-tri-*O*-*p*-methoxybenzyl-2,6-anhydro-1-deoxy-D-*glycero*-D-*ido*-heptitol-1-yl)-1,2-*O*-(1-methylethylidene)- α -D-*ribo*-pentofuranose (33). A suspension of 25 (1.07 g, 1.5 mmol) and NaH (60%, 288 mg, 7.2 mmol) in THF/DMF/HMPA (7 mL/7 mL/1 mL) prepared at 0 °C was stirred at room temperature for 30 min. BnBr (568 μ L, 4.8 mmol) was added to the mixture at 0 °C, and the resulting mixture was stirred at room temperature for 3 h. After addition of MeOH (500 μ L) at 0 °C, the mixture was partitioned between AcOEt (100 mL) and H₂O (70 mL), and the organic layer was washed with H₂O (70 mL, twice) and brine (70 mL), dried (Na₂SO₄), and evaporated. The residue was purified by column chromatography (SiO₂, hexane/ AcOEt 2:1) to give 33 (958 mg, 71% as a white solid): ¹H NMR (CDCl₃, 500 MHz) & 7.35-7.18 (m, 15 H, Ar), 7.02 (m, 2 H, Ar), 6.87–6.80 (m, 5 H, Ar), 5.83 (d, 1 H, H-1, J = 3.7), 4.85– 4.48 (m, 9 H, PhCH2), 4.37 (m, 3 H, H-2, H-1', PhCH2), 4.00 (m, 1 H, H-4), 3.81 (s, 3 H, OCH₃), 3.78 (s, 3 H, OCH₃), 3.76 (s, 3 H, OCH₃), 3.75-3.46 (m, 8 H, H-5a, H-5b, H-2', H-3', H-4', H-5', H-6'a, H-6'b), 2.17 (m, 1 H, H-3), 1.93 (m, 1 H, 3-CHaHb), 1.75 (m, 1 H, 3-CHaHb), 1.51 (s, 3 H, CH₃), 1.33 (s, 3 H, CH₃); $^{13}\mathrm{C}$ NMR (CDCl_3, 100 MHz) δ 158.90, 158.88, 158.84, 137.84, 137.76, 130.76, 130.18, 129.68, 129.40, 129.29, 128.14, 127.85, 127.59, 127.41, 127.31, 113.50, 111.05, 104.95, 104.68, 82.06, 80.70, 80.48, 80.37, 80.06, 79.72, 79.59, 77.51, 75.20, 75.16, 74.74, 73.42, 73.33, 72.94, 72.79, 72.60, 71.56, 71.04, 69.08, 68.07, 55.45, 55.37, 55.30, 55.28, 55.20, 55.12, 55.04, 54.94,40.32, 26.78, 26.69, 26.45, 26.40, 19.87; FAB-HRMS calcd for C₅₃H₆₂O₁₂Na 913.4139 (MNa⁺), found 913.4178. Anal. Calcd for C₅₃H₆₂O₁₂: C, 71.44; H, 7.01. Found: C, 71.46; H, 7.11.

5-O-Benzyl-1,2-di-O-acetyl-3-deoxy-3-(3-O-benzyl-4,5,7tri-O-acetyl-2,6-anhydro-1-deoxy-D-glycero-D-ido-heptitol-1-yl)-α,β-D-ribo-pentofuranose (34). A solution of 33 (1.7 g, 1.9 mmol) in aqueous TFA (80%, 10 mL) was stirred at room temperature for 3 h and then evaporated. The residue was purified by column chromatography (SiO₂, CHCl₃/MeOH 50: 1-4:1) to give an oil. A mixture of the oil obtained and NaOMe (28% in MeOH, 760 μ L) in MeOH (10 mL) was stirred at room temperature for 30 min and then neutralized with Diaion WK 20 (H^+ form). The resin was filtered off, and the filtrate was evaporated. A solution of the resulting residue, Ac₂O (1.4 mL, 14.8 mmol), Et₃N (2.12 mL, 15 mmol), and DMAP (23 mg, 0.19 mmol) in MeCN (20 mL) was stirred at room temperature for 1 h. The reaction mixture was partitioned between AcOEt (200 mL) and aqueous NaHCO₃ (saturated, 150 mL), and the organic layer was washed with aqueous NaHCO3 (saturated, 150 mL), H₂O (150 mL), and brine (100 mL), dried (Na₂SO₄), and evaporated. The residue was purified by column chromatography (SiO₂, hexane/AcOEt, 2:1) to give 34 (932 mg, 70% as a white solid): ¹H NMR (CDCl₃, 500 MHz) δ 7.37–7.23 (m, 10 H, Ar), 6.36 (d, 0.26 H, H-1 α , J = 4.0), 6.09 (s, 0.74 H, H-1 β ,), 5.40 (dd, 0.26 H, H-2, J = 4.0, 6.8), 5.32 (d, 0.74 H, H-2, J = 4.4), 5.25 (dd, 1 H, H-3', J = 9.3, 9.3), 4.89 (m, 1 H, H-4'), 4.64-4.48 (m, 4 H, PhCH2), 4.26-4.48 (m, 3 H, H-4, H-5a, H-1'), 3.94 (m, 1 H, H-5b), 3.77-3.57 (m, 3 H, H-2', H-5', H-6'a, H-6'b), 2.64-2.48 (m, 1 H, H-3), 2.07-1.78 (m, 17 H, 5 \times Ac, CH₂); ¹³C NMR (CDCl₃, 100 MHz) δ 170.28, 170,21, 169.99, 169.68, 169.56, 169.49, 169.16, 169.02, 155.26, 137.68, 137.59, 137.34, 132.72, 130.78, 129.60, 128.32, 127.85, 127.80, 127.64, 127.57, 127.50, 127.22, 113.42, 110.08, 98.98, 95.31, 82.73, 82.19, 77.20, 76.05, 73.53, 73.33, 72.58, 72.36, 72.29, 71.70, 71.45, 70.17, 68.84, 68.50, 68.21, 62.19, 55.11, 37.92, 34.90, 29.47, 21.39, 20.94, 20.76, 20.63, 20.47, 20.29, 20.22, 19.86; FAB-HRMS calcd for C₃₆H₄₄O₁₄Na 723.2628 (MNa⁺), found 723.2632. Anal. Calcd for C₃₆H₄₄O₁₄: C, 61.71; H, 6.33. Found: C, 61.66; H, 6.38.

Nº-Benzoyl-9-[5-O-benzyl-3-deoxy-3-(3-O-benzyl-4,5,7tri-O-acetyl-2,6-anhydro-1-deoxy-D-glycero-D-ido-heptitol-1-yl)-β-D-*ribo*-pentofuranosyl]adenine (35). A suspension of N^6 -benzoyladenine (343 mg, 1.43 mmol) in HMDS/pyridine (4 mL/2 mL) was heated under reflux for 1 h. The resulting clear solution was evaporated and azeotroped with toluene (three times). To a mixture of the resulting residue and 34 (251 mg, 358 μ mol) in CH₃CN (4 mL) was added SnCl₄ (209 μ L, 1.79 mmol) at 0 °C, and the mixture was stirred at room temperature for 12 h. The resulting mixture was partitioned between AcOEt (60 mL) and aqueous HCl (1 M, 50 mL), and the organic layer was washed with aqueous HCl (1 M, 50 mL), H₂O (50 mL), aqueous NaHCO₃ (saturated, 50 mL), and brine (50 mL), dried (Na₂SO₄), and evaporated. The residue was purified by column chromatography (SiO₂, CHCl₃/EtOH, 60: 1) to give **35** (265 mg, 78% as a white amorphous solid): ¹H NMR (CDCl₃, 500 MHz) δ 9.07 (br s, 1 H, NH), 8.81 (s, 1 H, H-2), 8.51 (s, 1 H, H-8), 8.03 (d, 2 H, Ar, J = 7.6), 7.62-7.23

(m, 13 H, Ar), 6.23 (s, 1 H, H-1'), 5.73 (d, 1 H, H-2', J = 4.6), 5.27 (dd, 1 H, H-3", J = 9.1, 9.1), 4.86 (dd, 1 H, H-4", J = 9.1, 9.1), 4.67-4.47 (m, 4 H, PhCH2), 4.22 (m, 2 H, H-4', H-1"), 4.14 (dd, 1 H, H-5'a, J = 4.5, 12.4), 3.94 (dd, 1 H, H-6"a, J = 1.9, 11.3), 3.81 (dd, 1H, H-5'b, J = 1.8, 12.4), 3.74 (m, 2 H, H-5", H-6"b), 3.68 (dd, 1 H, H-2", J = 5.8, 9.4), 2.99 (m, 1 H, H-3'), 2.04 (s, 3 H, Ac), 2.02 (s, 3 H, Ac), 2.00 (s, 3 H, Ac), 1.96 (s, 3 H, Ac), 1.89 (m, 1 H, 3'-CHaHb), 1.75 (m, 1 H, 3'-CHaHb); ¹³C NMR (CDCl₃, 100 MHz) δ 170.05, 169.87, 169.18, 169.15, 164.27, 152.30, 150.68, 149.11, 140.87, 136.98, 136.70, 133.33, 132.31, 128.42, 128.36, 128.25, 128.15, 127.87, 127.69, 127.57, 127.51, 127.13, 122.96, 88.64, 83.19, 77.14, 77.05, 75.66, 73.59, 72.58, 71.37, 71.12, 68.60, 68.49, 67.93, 61.78, 36.14, 20.79, 20.65, 20.60, 20.50, 19.56; FAB-HRMS calcd for C₄₆H₅₀N₅O₁₃ 880.3404 (MH⁺), found 880.3488. Anal. Calcd for C₄₆H₄₉N₅O₁₃. 0.5H₂O: C, 62.15; H, 5.67; N, 7.88. Found: C, 62.17; H, 5.72; N, 7.81.

1-[5-O-Benzyl-3-deoxy-3-(3-O-benzyl-4,5,7-tri-O-acetyl-2,6-anhydro-1-deoxy-D-glycero-D-ido-heptitol-1-yl)-β-Dribo-pentofuranosyl]uracil (36). A suspension of uracil (56 mg, 500 μ mol) and (NH₄)₂SO₄ (2 mg, 15 μ mol) in HMDS (3 mL) was heated under reflux for 30 min. The resulting clear solution was evaporated and azeotroped with toluene (three times). To a mixture of the resulting residue and 34 (50 mg, 71 µmol) in CH₃CN (2 mL) was added TMSOTf (90 µL, 497 *u*mol) at 0 °C, and the mixture was stirred at room temperature for 4 h. The reaction mixture was partitioned between AcOEt (40 mL) and aqueous HCl (1 M, 30 mL), and the organic layer was washed with aqueous HCl (1 M, 30 mL), H₂O (30 mL), aqueous NaHCO₃ (saturated, 30 mL), and brine (20 mL), dried ($\hat{N}a_2SO_4$), and evaporated. The residue was purified by column chromatography (SiO₂, CHCl₃/AcOEt 1:1) to give 36 (52 mg, 98% as a white amorphous): ¹H NMR (CDCl₃, 500 MHz) δ 9.12 (br s, 1 H, NH), 7.96 (d, 1 H, H-6, J = 8.2), 7.45-7.20 (m, 10 H, Ar), 5.82 (s, 1 H, H-1'), 5.49 (d, 1 H, H-2', J= 4.7), 5.35 (dd, 1 H, H-5, J = 2.1, 8.2), 5.25 (dd, 1 H, H-3", J = 8.8, 8.8), 4.86 (dd, 1 H, H-4", J = 8.8, 8.8), 4.61-4.48 (m, 4 H, PhCH₂), 4.26 (m, 2 H, H-1", H-6"a), 4.05 (m, 2 H, H-4', H-6"b), 3.74 (m, 3 H, H-5'a, H-5'b, H-5"), 3.64 (dd, 1 H, H-2", J = 5.6, 8.8), 2.56 (m, 1 H, H-3'), 2.05 (s, 3 H, Ac), 2.01 (s, 3 H, Ac), 1.94 (s, 3 H, Ac), 1.91 (s, 3 H, Ac), 1.79 (m, 1 H, 3'-CHaHb), 1.54 (m, 1 H, 3'-CHaHb); ¹³C NMR (CDCl₃, 125 MHz) δ 170.42, 170.39, 169.65, 169.22, 163.23, 149.94, 139.83, 137.41, 137.00, 139.83, 137.41, 137.00, 128.79, 128.52, 128.47, 128.00, 127.90, 127.58, 101.51, 89.88, 83.45, 76.96, 75.64, 73.98, 72.65, 71.16, 70.91, 69.00, 68.73, 67.82, 61.67, 60.39, 35.57, 35.57, 29.68, 20.85, 20.75, 20.60, 20.49, 19.83; FAB-HRMS calcd for C₃₈H₄₅N₂O₁₄ 753.2870 (MH⁺), found 753.2866. Anal. Calcd for C₃₈H₄₄N₂O₁₄: C, 60.63; H, 5.89; N, 3.72. Found: C, 60.71; H, 6.06: N. 3.55.

Nº-Benzoyl-9-[5-O-benzyl-3-deoxy-3-(3-O-benzyl-7-Otrityl-2,6-anhydro-1-deoxy-D-glycero-D-ido-heptitol-1-yl)β-D-*ribo*-pentofuranosyl]adenine (37). A solution of 35 (224 mg, 255 μ mol) and NaOMe (28% in MeOH, 102 μ L, 510 μ mol) in MeOH (2 mL) was stirred at 0 °C for 50 min and then neutralized with Diaion WK 20 (H⁺ form). The resin was filtered off, and the filtrate was evaporated. A mixture of the resulting residue and TrCl (355 mg, 1.27 mmol) in pyridine (2 mL) was stirred at 50 °C for 1 h. The reaction mixture was partitioned between AcOEt (40 mL) and H₂O (30 mL), and the organic layer was washed with aqueous HCl (1 M, 30 mL), H₂O (30 mL), aqueous NaHCO₃ (saturated, 30 mL), and brine (20 mL), dried (Na₂SO₄), and evaporated. The residue was purified by column chromatography (SiO2, CHCl3/EtOH 30:1) to give 37 (235 mg, 97% as a white amorphous solid): ¹H NMR (CDCl₃, 500 MHz) δ 9.03 (br s, 1 H), 8.76 (s, 1H), 8.50 (s, 1 H), 7.86 (d, 2 H, J = 7.6), 7.62-7.16 (m, 28 H), 6.14 (s, 1 H), 4.67 (m, 2 H), 4.53 (m, 3 H), 4.32 (d, 1 H, J = 10.0), 4.27 (m, 1 H), 3.87 (m, 1 H), 3.68 (dd, 1 H, J = 9.1, 9.1), 3.62 (dd, 1 H, J = 9.1)2.8, 11.0), 3.53 (m, 2 H), 3.45 (dd, 1 H, J = 9.1, 9.1), 3.22 (d, 2 H, J = 3.8), 2.61 (m, 1 H), 2.00 (m, 1 H), 1.72 (m, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 164.12, 151.69, 149.56, 149.07, 143.24, 140.79, 137.12, 137.03, 133.28, 132.36, 128.66, 128.40, 128.28, 128.13, 127.75, 127.62, 127.57, 127.43, 127.34, 126.72, 124.93, 122.79, 91.85, 86.46, 84.13, 78.57, 77.06, 73.12, 72.87, 72.20, 71.64, 71.51, 71.23, 67.98, 64.24, 37.11, 19.64; FAB-HRMS calcd for $C_{57}H_{56}N_5O_9$ 954.4077 (MH⁺), found 954.4094. Anal. Calcd for $C_{57}H_{55}N_5O_9$ • H₂O: C, 70.43; H, 5.91; N, 7.20. Found: C, 70.80; H, 6.00; N, 7.00.

1-[5-O-Benzyl-3-deoxy-3-(3-O-benzyl-7-O-trityl-2,6-anhydro-1-deoxy-D-glycero-D-ido-heptitol-1-yl)-β-D-ribopentofuranosyl]uracil (38). Compound 38 was prepared from **36** (47 mg, 71 μ mol) by the procedure described for the synthesis of 37. The resulting residue was purified by column chromatography (SiO₂, CHCl₃/EtOH 20:1) to give 38 (47 mg, 92% as a white solid): ¹H NMR (CDCl₃, 500 MHz) δ 10.40 (br s, 1 H), 7.92 (d, 1 H, J = 8.1), 7.37-7.15 (m, 25 H), 5.77 (s, 1 H), 4.92 (d, 1 H, J = 8.1), 4.59 (m, 2 H), 4.44 (m, 2 H), 4.36 (m, 1 H), 4.34 (m, 1 H), 4.23 (d, 1 H, J = 10.9), 3.89 (m, 1 H), 3.69 (dd, 1 H, J = 8.9, 8.9), 3.57 (m, 4 H), 3.21 (d, 1 H, J = 2.6), 2.30 (m, 1 H), 1.97 (m, 1 H), 1.62 (m, 1 H); ¹³C NMR (CDCl₃, 125 MHz) δ 163.87, 151.13, 143.93, 140.07, 137.88, 137.52, 137.16, 128.77, 128.71, 128.60, 128.27, 128.10, 127.78, 127.19, 101.38, 92.84, 86.56, 84.30, 79.08, 77.47, 76.39, 73.57, 73.49, 72.52, 71.91, 71.48, 71.03, 68.28, 63.87, 49.42, 49.25, 49.07, 36.75, 19.24; FAB-HRMS calcd for C49H50N2O10Na 849.3363 (MNa⁺), found 849.3387. Anal. Calcd for C₄₉H₅₀N₂O₁₀·H₂O: C, 69.65; H, 6.20; N, 3.32. Found: C, 69.33; H, 6.30; N, 3.20.

N⁶-Benzoyl-9-[5-*O*-benzyl-3-deoxy-3-[3-*O*-benzyl-7-*O*trityl-4,5-bis-O-(o-xyloxyphosphoryl)-2,6-anhydro-1-deoxy-D-glycero-D-ido-heptitol-1-yl]-2-O-(o-xyloxyphosphoryl)β-D-*ribo*-pentofuranosyl]adenine (39). XEPA (239 μL, 1.11 mmol) was added to a mixture of 37 (235 mg, 246 μ mol) and 1H-tetrazole (121 mg, 1.73 mmol) in CH₂Cl₂ (4 mL) at 0 °C, and the mixture was stirred at room temperature for 20 min. After addition of H₂O (40 μ L), the mixture was stirred at room temperature for 10 min. The resulting mixture was cooled to -40 °C, and m-CPBA (299 mg, 1.73 mmol) was added. The mixture was warmed to room temperature over 20 min. The reaction mixture was partitioned between AcOEt (40 mL) and aqueous Na₂SO₃ (saturated, 30 mL), and the organic layer was washed with H₂O (30 mL), aqueous NaHCO₃ (saturated, 30 mL), and brine (20 mL), dried (Na₂SO₄), and evaporated. The residue was purified by column chromatography (SiO₂, CHCl₃/ acetone 5:1) to give 39 (345 mg, 92% as a white amorphous): ¹H NMR (CDCl₃, 500 MHz) δ 8.93 (br s, 1 H, NH), 8.60 (s, 1 H, H-2), 8.31 (s, 1 H, H-8), 7.99 (m, 2 H), 7.63-7.04 (m, 40 H), 6.44 (s, 1 H, H-1'), 5.51–3.21 (m, 27 H, 6 \times XEP-CH₂, 2 \times Ph*CH*₂, H-2', H-4', H-5'a, H-5'b, H-1", H-2", H-3", H-4", H-5' H-6"a, H-6"b), 2.90 (m, 1 H, H-3'), 2.01 (m, 2 H, 3'-CH₂); ¹³C NMR (CDCl₃, 125 MHz) & 163.83, 152.26, 150.23, 148.84, 143.84, 143.04, 140.65, 137.27, 136.86, 135.04, 134.80, 134.70, 134.66, 134.55, 134.38, 133.47, 132.31, 129.12, 129.07, 128.94, 128.86, 128.52, 128.48, 128.41, 128.34, 128.27, 128.17, 128.13, 127.98, 127.42, 127.20, 127.15, 127.11, 126.49, 122.40, 88.60, 86.48, 82.95, 82.31, 82.24, 78.69, 77.11, 74.75, 73.19, 72.30, 70.77, 70.73, 70.51, 69.28, 68.78, 68.70, 68.59, 68.51, 68.45, 68.35, 68.28, 68.10, 68.01, 67.94, 67.63, 67.57, 62.29, 53.70, 39.02, 38.98, 37.12, 37.05, 31.64, 29.17, 19.74, 14.00, 13.98; ³¹P NMR(CDCl₃, 67.5 MHz) & 0.57, -0.92, -1.13; FAB-HRMS calcd for C₈₁H₇₇N₅O₁₈P₃ 1500.4477 (MH⁺), found 1500.4460. Anal. Calcd for C₈₁H₇₆N₅O₁₈P₃· H₂O: C, 64.07; H, 5.18; N, 4.61. Found: C, 63.88; H, 5.51; N, 4.62.

1-[5-O-Benzyl-3-deoxy-3-[3-O-benzyl-7-O-trityl-4,5-bis-O-(o-xyloxyphosphoryl)-2,6-anhydro-1-deoxy-D-glycero-D-*ido*-heptitol-1-yl]-2-O-(o-xyloxyphosphoryl)-β-D-ribopentofuranosyl]uracil (41). Compound 41 was prepared from **38** (28 mg, 34 μ mol) by the procedure described for the synthesis of 39. The resulting residue was purified by column chromatography (SiO₂, CHCl₃/EtOH 40:1) to give 41 (39 mg, 84% as a white solid): ¹H NMR (CDCl₃, 500 MHz) δ 8.91 (br s, 1 H, NH), 7.63 (d, 1 H, H-6, J = 8.2), 7.49-7.12 (m, 37 H, Ar), 6.11 (s, 1 H, H-1'), 5.48–3.21 (m, 28 H, $6 \times XEP$ -CH₂, 2 × PhCH2, H-5, H-27, H-4', H-5'a, H-5'b, H-1", H-2", H-3", H-4", H-5", H-6"a, H-6"b), 2.50 (m, 1 H, H-3'), 1.98 (m, 2 H, 3'-CH₂); ¹³C NMR (CDCl₃[,] 125 MHz) δ 162.58, 149.96, 143.59, 139.25, 138.03, 137.27, 135.49, 135.27, 135.12, 135.07, 134.89, 134.87, 129.42, 129.15, 128.96, 128.88, 128.83, 128.78, 128.70, 128.64, 128.59, 128.54, 128.50, 128.36, 128.25, 128.01, 127.90, 127.73, 127.48, 127.41, 127.07, 101.78, 89.63, 86.69, 82.99, 82.11, 79.06, 77.65, 77.26, 75.32, 73.45, 72.34, 70.79, 70.27, 68.97, 68.92, 68.83, 68.78, 68.70, 68.50, 68.22, 68.17, 67.84, 62.39, 39.18, 36.91, 19.47, 14.05; ³¹P NMR (CDCl₃ 67.5 MHz) δ -0.71, -1.03, 1.20; UV (MeOH) λ_{max} 280 nm; FAB-HRMS calcd for C₇₂H₇₂N₂O₁₉P₃ 1373.3942 (MH⁺), found 1373.3860. Anal. Calcd for C₇₃H₇₁N₂O₁₉P₃·H₂O: C, 63.02; H, 5.29; N, 2.01. Found: C, 62.97; H, 5.48; N, 2.51.

9-[5-O-Benzyl-3-deoxy-3-[3-O-benzyl-7-O-trityl-4,5-bis-O-(o-xyloxyphosphoryl)-2,6-anhydro-1-deoxy-D-glycero-D-*ido*-heptitol-1-yl]-2-O-(o-xyloxyphosphoryl)-β-D-ribopentofuranosyl]adenine (40). A mixture of 39 (17 mg, 11 μ mol) in aqueous NH₃ (25%)/dioxane (1 mL/1 mL) was stirred at room temperature for 7 h and then evaporated. The resulting residue was purified by column chromatography (SiO₂, CHCl₃/EtOH 30:1) to give 40 (14 mg, 89% as a white amorphous): ¹H NMR (CDCl₃, 500 MHz) δ 8.07 (s, 1 H, H-2), 8.00 (s, 1 H, H-8), 7.82-7.03 (m, 37 H, Ar), 6.33 (s, 1 H, H-1'), 5.54 (br s, 2 H, NH₂), 5.50-3.24 (m, 27 H, 6 × XEP-CH₂, 2 × PhCH₂, H-2', H-4', H-5'a, H-5'b, H-1", H-2", H-3", H-4", H-5" H-6"a, H-6"b), 3.00 (m, 1 H, H-3'), 2.03 (m, 2 H, 3'-CH₂); ¹³C NMR (CDCl₃, 125 MHz) δ 169.03, 155.02, 152.55, 148.80, 143.08, 138.23, 137.37, 137.12, 135.04, 134.75, 134.64, 134.61, 134.43, 133.14, 131.39, 129.01, 128.93, 128.80, 128.71, 128.57, 128.49, 128.41, 128.34, 128.28, 128.19, 128.10, 128.02, 127.93, 127.29, 127.24, 127.14, 127.05, 127.01, 126.52, 119.44, 88.83, 86.53, 82.80, 82.36, 82.31, 78.72, 77.32, 77.09, 74.94, 73.12, 72.20. 70.61, 68.70, 68.56, 68.50, 68.43, 68.36, 67.99, 67.92, 67.65, 67.58, 62.15, 39.03, 38.99, 37.80, 37.73, 19.91, 14.01, 13.98; ³¹P NMR (CDCl₃, 67.5 MHz) δ 0.48, -0.77, -1.12; UV (MeOH) λ_{max} 261 nm; FAB-HRMS calcd for C₇₄H₇₃N₅O₁₇P₃ 1396.4214 (MH⁺), found 1396.4290. Anal. Calcd for C₇₄H₇₂N₅O₁₇P₃· H₂O: C, 62.84; H, 5.27; N, 4.95. Found: C, 62.50; H, 5.42; N, 5.27.

9-[3-Deoxy-3-(4,5-di-O-phosphoryl-2,6-anhydro-1-deoxy-D-glycero-D-ido-heptitol-1-yl)-2-O-phosphoryl-β-D-ribopentofuranosyl]adenine Hexasodium Salt (9). A mixture of 40 (10 mg, 7.4 μmol) and Pd-black (2 mg) in aqueous MeOH (80%, 1 mL) was stirred under atmospheric pressure of hydrogen at room temperature for 72 h. After the catalysts were filtrated through a Celite pad, the filtrated was evaporated. A solution of the residue in H₂O (2 mL) was applied to Daiaion WK-20 (Na⁺ form, developed with H_2O), and the fractions containing 9 were evaporated and dried in vacuo to give 9 (5.6 mg as a white solid, yield 85% based on quantitative UV analysis). This compound was hygroscopic, and therefore, the solvation status was measured by quantitative UV absorption at 260 nm. The content was 89% based on an molar absorption coefficient of 2'-AMP:^{23} ^1H NMR (D_2O, 500 MHz) δ 8.29 (s, 1 H, H-2), 8.17 (s, 1 H, H-8), 6.35 (s, 1 H, H-1'), 5.00 (dd, 1 H, H-2', J = 4.9, 7.6), 4.21 (m, 3 H, H-4', H-1", H-4"), 4.07 (dd, 1 H, H-6"a, J = 6.8, 12.9), 3.92 (ddd, 1 H, H-3", J = 5.7, 5.7, 10.0), 3.82 (dd, 1 H, H-5'a, J = 1.4, 13.0), 3.79 (m, 2 H, H-2", H-5"), 3.65 (dd, 1 H, H-5'b, J = 3.7, 13.0), 3.57 (dd, 1H, H-6"b, J = 3.2, 12.9), 2.71 (m, 1 H, H-3'), 2.02 (m, 1 H, 3'-CHaHb), 1.80 (m, 1 H, 3'-CHaHb); 13C NMR (D2O, 125 MHz) δ 155.48, 152.47, 148.74, 140.25, 118.67, 89.32, 85.62, 77.64, 75.59, 68,41, 60.92, 59.69, 48.83, 37.78, 37.73, 23.24, 20.02; ³¹P NMR(D₂O, 67.5 MHz) δ 4.68, 4.20, 4.14; UV (H₂O) λ_{max} 260 nm; FAB-HRMS (triethylammonium salt, negative) calcd for $C_{17}H_{27} N_5 O_{17}P_3$ 666.0615 [(M - H)⁻], found 666.0615.

1-[3-Deoxy-3-(4,5-di-*O***-phosphoryl-2,6-anhydro-1-deoxy-D-***glycero*-**D-***ido***-heptitol-1-yl**)-**2**-*O***-phosphoryl**-*β*-**D-***ribo***-pentofuranosyl]uracil Hexasodium Salt (10)**. Compound **10** (5 mg as white solid, yield 85% based on quantitative UV analysis) was prepared from **41** (10 mg, 2.2 μmol) by the procedure described for the synthesis of **9** with 10% Pd-C (4 mg) instead of Pd-black. This compound was hygroscopic, and therefore, the solvation status was measured by quantitative UV absorption at 260 nm: the content was 91% based on an molar absorption coefficient of 2'-UMP:²³ ¹H NMR (D₂O, 500 MHz) δ 7.59 (d, 1 H, H-6, J = 7.7), 6.02 (s, 1 H, H-1'), 5.72 (d,

⁽²³⁾ Dawson, R. M. C.; Elliott, D. C.; Elliott, W. H.; Jones, K. M. Data for Biochemical Research. Oxford; Clarendon Press: 1986.

1 H, H-5, J = 7.7), 4.74 (m, 1 H, H-2'), 4.20 (m, 2 H, H-1", H-4''), 4.07 (m, 2 H, H-4', H-6"a), 3.93 (ddd, 1 H, H-3", J = 5.0, 5.0, 10.8), 3.85 (m, 2 H, H-5'a, H-2''), 3.78 (dd, 1 H, H-5", J = 3.5, 5.7), 3.68 (dd, 1 H, H-5'b, J = 4.5, 12.8), 3.61 (dd, 1 H, H-6"b, J = 3.5, 12.9), 2.35 (m, 1 H, H-3'), 2.00 (m, 1 H, 3'-CHaHb), 1.72 (m, 1 H, 3'-CHaHb); ³¹P NMR (D₂O, 67.5 MHz) δ 4.57, 4.09, 3.93; UV (H₂O) λ_{max} 262 nm; FAB-HRMS (triethylammonium salt, negative) calcd for C₁₆H₂₆ N₂O₁₉P₃ 643.0343 [(M - H)⁻], found 643.0359.

Acknowledgment. This investigation was supported in part by a Grant from the Ministry of Education, Science, Sports, and Culture of Japan. We ac-

knowledge useful discussions with Mr. I. Sugimoto, Drs. S. Ichikawa and A. M. Riley, and Prof. B. V. L. Potter. We are also grateful to Ms. H. Matsumoto, A. Maeda, S. Oka, and N. Hazama (Center for Instrumental Analysis, Hokkaido University) for technical assistance with NMR, MS, and elemental analysis.

Supporting Information Available: ¹H NMR spectral charts of **18**, **21–23**, **21**′, **22**′, **26**, **29**, **31**, **32**, **9**, and **10**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO0001333