# Synthesis of the C-Glycosidic Analogue of Adenophostin A and Its Uracil Congener as Potential I $P_{3}$ Receptor Ligands. Stereoselective Construction of the C-Glycosidic Structure by a Temporary Silicon-Tethered Radical Coupling Reaction ${ }^{\dagger}$ 

Hiroshi Abe, Satoshi Shuto,* and Akira Matsuda<br>Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, J apan

Received February 2, 2000


#### Abstract

Synthesis of the C-glycosidic anal ogue $\mathbf{9}$ of adenophostin A, a very potent IP 3 receptor agonist, and its uracil congener $\mathbf{1 0}$ was achieved via a temporary silicon-tethered radical coupling reaction as the key step. Phenyl 3,4,6-tri-O-(p-methoxybenzyl)-1-sel eno- $\beta$-d-glucopyranoside (27) and 3-deoxy-3-methylene-1,2-O-isopropylidene- $\alpha$-D-erythro-pentofuranose (30) were connected by a dimethylsilyl tether to give the radical coupling reaction substrate $\mathbf{2 4}$, which was successively treated with $\mathrm{Bu}_{3^{-}}$ SnH/AIBN in benzene and TBAF in THF to give the coupling product $\mathbf{2 5}$ with the desired ( $3 \alpha, 1^{\prime} \alpha$ )configuration as the major product. From 25, the targets $\mathbf{9}$ and $\mathbf{1 0}$ were synthesized via introduction of adenine or uracil base by Vorbrüggen's method and phosphorylation of the hydroxyls by the phosphoramidite method.


## Introduction

Considerable attention has been focused on D-myoinositol $1,4,5$-trisphosphate ( $\mathrm{IP}_{3}$ ), an intracellular $\mathrm{Ca}^{2+}$ mobilizing second messenger, because of its significant biological importance ${ }^{1,2}$ Therefore, anal ogues of $I P_{3}$ have been extensively studied to develop specific ligands for $\mathrm{IP}_{3}$ receptors, which are very useful for proving the mechanism of $\mathrm{IP}_{3}$-mediated $\mathrm{Ca}^{2+}$ signaling pathways. ${ }^{3}$ However, none of these anal ogues has surpassed IP $P_{3}$ itself either in binding affinity for the $\mathrm{IP}_{3}$ receptor or in $\mathrm{Ca}^{2+}-$ mobilizing activity. ${ }^{3}$

Recently, Takahashi and co-workers isolated adenophostin A (2) and B (3) from Penicillium brevicompactum and found them to be very strong $I P_{3}$ receptor ligands. Compounds $\mathbf{2}$ and $\mathbf{3}$ are 10-100 times more potent than $\mathrm{IP}_{3}$ with regard to both their affinity for the $\mathrm{IP}_{3}$ receptor and their $\mathrm{Ca}^{2+}$-mobilizing ability in cells. ${ }^{4}$ Because of this interesting biological feature, adenophostins are considered attractive targets of total synthesis. ${ }^{5}$ Their intriguing structural features have al so prompted several groups including ours to perform synthetic studies of novel $\mathrm{IP}_{3}$

[^0]receptor ligands. ${ }^{6,7}$ Biological evaluations of these compounds, $\mathbf{4}, \mathbf{5}, \mathbf{6}$, and $\mathbf{7}$, the structures of which are shown in Figure 1, showed that (1) the $\alpha-\mathrm{D}$-glucopyranose structure is a good bioisostere of the myo-inositol backbone of $I P_{3}$; (2) the three-dimensional locations of the three phosphate groups of adenophostin A and its analogues are critical for their biological activity; and (3) the adenine moiety significantly enhances the activity. ${ }^{6,7}$
C-Glycosides, on the other hand, have been extensively studied since they are biologically stable mimics of the corresponding O-glycosides. ${ }^{8}$. We designed the C-glycosidic anal ogue 9 of adenophostin A as a novel $\mathrm{IP}_{3}$ receptor ligand. As described above, the threedimensional locations of the phosphate groups of adenophostin A and B are critical for their biological activity. The conformation around the glycosyl linkages in carbohydrates, such as

[^1]

Figure 1.
adenophostins, which is known to be affected significantly by the anomeric effect of the sugar-ring oxygen, is an important determinant in the three-dimensional structure of these molecules. ${ }^{9}$ Therefore, we were interested in investigating the biol ogical activity and conformation of the C-glycoside 9 and in comparing these results with those of the parent O-glycoside, adenophostin A. This study may clarify the role of the glycosidic oxygen on the biological activity as well as the molecular conformation of adenophostin A.

The uracil congener $\mathbf{1 0}$ of C-glycosidic adenophostin was another of our synthetic targets, since the adenophostin analogue 8 having a uracil instead of an adenine as the base moiety was most recently identified as a very potent I $\mathrm{P}_{3}$ receptor agonist. ${ }^{10}$

Synthetic Study with Silyl-Tethered Adenosine Derivative 12 as a Substrate for the Radical Coupling Reaction. In the synthesis of thetarget compound 9, formation of the C-glycosidic linkage with the desired ( $3^{\prime} \alpha, 1^{\prime \prime} \alpha$ )-configuration is considered the key step. The use of radical reactions is an efficient methods for constructing C-glycosidic bonds. ${ }^{8}$ Recently, a very efficient method for preparing C-glycosidic disaccharides by a temporary silicon-tethered reductive radical coupling reaction was reported. ${ }^{11}$ We planned to use this type of radical coupling reaction as the key step for synthesizing the C -glycosidic analogue of adenophostin A. ${ }^{12}$ Our

[^2]synthetic plan is shown in Scheme 1. The key C-glycosidic linkage is constructed by a reductive radical coupling reaction of the silaketal-tethered substrate $\mathbf{1 2}$, which can be prepared from the 1-phenylsel enoglucose unit 13 and the 3'-exomethylene adenosine unit 14. It is known that anomeric radicals of glucose derivatives adopt a $\mathrm{B}_{2,5}$ boatlike conformation and that their addition reactions on alkenes selectively occur from the axial direction due to the anomeric effect to give the corresponding $\alpha$-Cglycosides. ${ }^{13}$ We therefore expected that radical reaction of 12 and subsequent removal of the silyl tether would give the desired C-glycosidic product $\mathbf{1 1}$ with the desired ( $3^{\prime} \alpha, 1^{\prime \prime} \alpha$ )-configuration. From 11, the target compound 9 can be synthesized via introduction of the phosphate groups.

## Scheme 1





## Scheme 2a



[^3]The synthesis and radical reaction of the substrate $\mathbf{1 2}$ is summarized in Scheme 2. Removal of the acetyl groups of the known ortho ester $\mathbf{1 5}^{14}$ and subsequent protection of the resulting hydroxyls with benzyl groups gave 16. A PhSe group was introduced at the anomeric $\beta$-position by treating $\mathbf{1 6}$ with $\mathrm{PhSeH} /$ molecular sieves $3 \mathrm{~A},{ }^{15}$ and the resulting 2-O-acetyl group was removed to complete the synthesis of pyranose unit 13. 2'-O-TBS-5'-O-Tradenosine (18) was successively treated with $\mathrm{CrO}_{3} / \mathrm{Ac}_{2} \mathrm{O} /$ pyridine/molecular sieves 4 A in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$ in THF gave the 3'-methylene derivative 19. ${ }^{16}$ Protection of the $\mathrm{N}^{6}$-amino function of 19 with a benzoyl group ${ }^{17}$ and removal of the $5^{\prime}-\mathrm{O}-\mathrm{Tr}$ group with TFA in $\mathrm{CHCl}_{3}$ gave the adenosine unit 14. Next, the units $\mathbf{1 3}$ and $\mathbf{1 4}$ were temporarily connected with a silaketal linkage. Thus, treatment of $\mathbf{1 3}$ with $\mathrm{BuLi} / \mathrm{Me}_{2} \mathrm{SiCl}_{2}$ in THF yielded the corresponding $2-\mathrm{O}-\mathrm{Si}(\mathrm{Cl}) \mathrm{Me}_{2}$ product, which was then treated with 14 in the presence of $E t_{3} \mathrm{~N}$ to give the silaketal 12, the substrate for the radical coupling reaction. The compound $\mathbf{1 2}$ was used directly for the next radical reaction without purification because of its instability.

The reductive coupling reaction of $\mathbf{1 2}$ was investigated with $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{AIBN}$ under various conditions, and the products were purified by silica gel column chromatography after the radical reaction mixture was treated with TBAF in THF to remove the silyl tether. However, none of the desired ( $\left.3^{\prime} \alpha, 1^{\prime \prime} \alpha\right)$-C-glycoside $\mathbf{1 1}$ was obtained. For example, when a solution of $\mathrm{Bu}_{3} \mathrm{SnH}$ ( 2.0 equiv) and AIBN ( 0.7 equiv) in benzene was added slowly over 1.2 h to a solution of $\mathbf{1 2}$ in benzene at $80^{\circ} \mathrm{C}$, a mixture of the undesired ( $3^{\prime} \beta, 1^{\prime \prime} \alpha$ )-C-glycoside 21 and ( $3^{\prime} \beta, 1^{\prime \prime} \beta$ )-Cglycoside 22 resulted in 35\% yield (21:22 = 28:72), along

[^4]


Figure 2.
with the direct reduction product 23 (25\%), after desilyIation. After the products were converted into the corresponding pentabenzoates 21' and 22', their stereochemistries were confirmed by ${ }^{1} \mathrm{H}$ NMR spectra and NOE experiments, as shown in Figure 2.

These results suggested that in the anomeric radical intermediate (I or II), it would be difficult for the 3'-methylene moiety to approach the anomeric radical from the $\alpha$-face, probably due to the steric repulsion between the bulky 2'-O-TBS group and the pyranose ring, to give the $1^{\prime \prime} \beta$-product selectively, as shown in Scheme 3. Subsequent reduction of the resulting $3^{\prime}$-radical III by $\mathrm{Bu}_{3} \mathrm{SnH}$ from the desired $\beta$-face was al so disfavored, since the $\beta$-face of the ribose moiety of III was likely to be sterically very hindered due to the adenine base, and therefore would give the ( $3^{\prime} \beta, 1^{\prime \prime} \beta$ )-product IV as the major product (Scheme 3).

Synthetic Study with the Silyl-Tethered Ribose Derivative $\mathbf{2 4}$ as a Substrate for the Radical Cou-

Scheme 3


III


Scheme 4




VII


pling Reaction. Based on the above unsuccessful results, we designed an alternative substrate $\mathbf{2 4}$ (Scheme 4), in which 1,2-0-isopropylidene-3-methyleneribose derivative is connected with a glucose unit by a silyl tether, for the radical reaction. We assumed that the radical $\mathbf{V}$ derived from the substrate $\mathbf{2 4}$ would cyclize stereoselec-
tively, due to the stereoelectronic effect ${ }^{13}$ described above, to give the $\alpha$-C-glycosidic radical VI. Subsequent reduction by $\mathrm{Bu}_{3} \mathrm{SnH}$ would likely occur from the sterically unhindered $\beta$-face of the furanose ring, because of the steric repulsion of the isopropylidene group when $\mathrm{Bu}_{3}-$ SnH attacked the 3-radical from the $\alpha$-face. Accordingly, this radical reaction should proceed stereoselectively to give VII, and subsequent desilylation would give $\mathbf{2 5}$ with the desired ( $3 \alpha, 1^{\prime} \alpha$ )-configuration (Scheme 4). From 25, the target compounds $\mathbf{9}$ and $\mathbf{1 0}$ would be synthesized via the introduction of a nucleobase at the $1 \beta$-position by Vorbrüggen's procedure. ${ }^{18}$

The synthesis of the substrate $\mathbf{2 4}$ is shown in Scheme 5. The glucose unit 27 was synthesized from $\mathbf{1 5}$ by a method similar to the one for 13 described above. A Wittig reaction of a 3-keto sugar 28, ${ }^{19}$ prepared from D-xylose, with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$ in THF gave the corresponding 3'-methylene product 29, the 5-O-TBS group of which was removed with TBAF to give the furanose unit 30. Next, the units $\mathbf{2 7}$ and $\mathbf{3 0}$ were temporarily connected with a silaketal linkage to give $\mathbf{2 4}$ in 67\% yield.

The reductive coupling reaction of $\mathbf{2 4}$ was investigated with $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{AIBN}$ under various conditions. When a solution of $\mathrm{Bu}_{3} \mathrm{SnH}$ ( 2.0 equiv) and AIBN ( 0.5 equiv) in benzene was added slowly over 1.2 h to a solution of 24 in benzene at $80^{\circ} \mathrm{C}$, the best result was obtained. After the reaction mixture was treated with TBAF in THF and purified by silica gel flash chromatography, the desired ( $3 \alpha, 1^{\prime} \alpha$ )-C-glycoside $\mathbf{2 5}$ was obtained as the major product ( $50 \%$ ) along with the C-glycoside 31 having the ( $3 \alpha, 1^{\prime} \beta$ )configuration (22\%) and the directly reduced product 32 (25\%). A similar radical reaction of 24 at $110{ }^{\circ} \mathrm{C}$ in toluene and subsequent desilylation also gave the desired 25; however, the yield was poorer ( 25 22\%, 31 14\%, 32 36\%). The stereochemistries of these C-glycosidic products were confirmed by ${ }^{1} \mathrm{H}$ NMR and gradient enhanced NOE (GOESY) spectra of the corresponding dibenzoates, as shown in Figure 3. One-pot conversion of 27 and 30 into the C-glycoside $\mathbf{2 5}$ was further investigated, since we noted that the silyl-tethered substrate $\mathbf{2 4}$ was rather unstable and likely to decompose partially during the workup. Thus, the tethered substrate 24, without purification, was immediately treated under the same radical reaction conditions, followed by desilylation with TBAF, which successfully improved the yield of the desired C-glycoside 25 (50\% from 27).

Conversion of $\mathbf{2 5}$ into the targets 9 and 10 was performed as shown in Scheme 6. After protection of the two free hydroxyls of $\mathbf{2 5}$ with benzyl groups, the pmethoxybenzyl (PMB) groups and the isopropylidene group were removed with $90 \%$ TFA, and the resulting free hydroxyls were acetylated to give 34. An adenine base was successfully introduced at the $1 \beta$-position of 34 , using the usual Vorbrüggen glycosylation procedure ${ }^{18}$ with silylated $\mathrm{N}^{6}$-benzoyladenine and $\mathrm{SnCl}_{4}$ in MeCN to give adenyl C-disaccharide 35 in $78 \%$ yield. Similarly, the corresponding uracil derivative 36 was also synthesized using the Vorbrüggen reaction with silylated uracil. The four acetyl groups of 35 were removed simultaneously, and the 6"-primary hydroxyl was selectively protected with a trityl group to give 37. Phosphate units

[^5]
${ }^{\text {a }}$ Conditions: (a) (1) NaOMe , THF/MeOH, rt, (2) $\mathrm{NaH}, \mathrm{PMBCI}, \mathrm{HMPA} / \mathrm{DMF}$, rt, 77\%; (b) (1) PhSeH , molecular sieves $3 \mathrm{~A}, \mathrm{MeNO}_{2}$, reflux, (2) NaOMe , $\mathrm{THF} / \mathrm{MeOH}$, rt, 66\%; (c) (1) $\mathrm{NaOCMe} \mathrm{Et}, \mathrm{Ph} 3 \mathrm{PMeBr}, \mathrm{THF}, \mathrm{rt}, 92 \%$; (d) TBAF, THF, rt, 95\%; (e) (1) 27, $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$, BuLi, THF, $-78{ }^{\circ} \mathrm{C}$ to rt, (2) 30, Et ${ }_{3} \mathrm{~N}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to rt; (f) (1) Bu3 SnH , AIBN, benzene, reflux, (2) TBAF, THF, 25 (50\% from 27), 31 ( $16 \%$ from 27), 32 (11\% from 27).

$31^{\prime}\left(3 \alpha, 1^{\prime} \beta\right)$
Figure 3.
were introduced, using the phosphoramidite method with o-xylene N,N-diethylphosphoramidite (XEPA) devel oped by Watanabe and co-workers. ${ }^{20}$ Thus, $\mathbf{3 7}$ was treated with XEPA and tetrazole in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by oxidation with m-CPBA to give the desired $2^{\prime}, 3^{\prime \prime}, 4^{\prime \prime}$-trisphosphate derivative 39 in $92 \%$ yield. The $\mathrm{N}^{6}$-benzoyl group was removed with $\mathrm{NH}_{3}$ in aqueous dioxane. Finally, the trityl and benzyl protecting groups were all removed in one step by catalytic hydrogenation with Pd-black in aqueous MeOH to give the target compound 9 in $85 \%$ yield as a sodium salt, after treatment with ion-exchange resin. The uracil congener $\mathbf{1 0}$ was al so successfully synthesized from 36 by a similar procedure as shown in Scheme 6.

In summary, we have successfully synthesized the C-glycosidic adenophostin A (9) and its uracil congener 10, using a temporary silicon-tethered reductive coupling reaction as the key step. Biological evaluation is now in progress.

## Experimental Section

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra were recorded at 270 and 500 $\mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$, at 100 and $125 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, and at $67.5 \mathrm{MHz}\left({ }^{31} \mathrm{P}\right)$, respectively. Chemical shifts are reported in ppm downfield

## Scheme $6^{a}$


a Conditions: (a) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{HMPA} / \mathrm{DMF} / \mathrm{THF}, 0^{\circ} \mathrm{C}$ tort, $71 \%$; (b) (1) $90 \% \mathrm{TFA}, 0^{\circ} \mathrm{C}$ tort, (2) $\mathrm{NaOMe}, \mathrm{MeOH}, \mathrm{rt}$, (3) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP, MeCN, 70\%; (c) silylated $\mathrm{N}^{6}$-benzoyladenine, $\mathrm{SnCl}_{4}, \mathrm{MeCN}$, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 35$ (78\%); (d) silylated uracil, TMSOTf, MeCN, $0^{\circ} \mathrm{C}$ to rt, 36 (98\%); (e) (1) NaOMe MeOH , (2) $\mathrm{TrCl}, \mathrm{py}, 0-50^{\circ} \mathrm{C}, 37$ (95\%), 38 (92\%); (f) XEPA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}$, then m-CPBA, $-40^{\circ} \mathrm{C}$ to rt, 39 (92\%), 41 (84\%); (g) (1) $\mathrm{NH}_{3}$, aqueous dioxane, rt, 89\%; (h) $\mathrm{H}_{2}$, Pd-black, aqueous $\mathrm{MeOH}, \mathrm{rt}, 85 \%$; (i) $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}$, aqueous MeOH , rt, $85 \%$.
from TMS ( ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ ) or $\mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$, and J values are given in hertz. The ${ }^{1} \mathrm{H}$ NMR assignments were in agreement with COSY spectra. Mass spectra were obtained by fast atom bombardment (FAB) methods. Thin-layer chromatography was done on Merck silica gel-coated plate $60 \mathrm{~F}_{254}$. Silica gel chromatography was done on Merck silica gel 7734 or 9385. Reactions were carried out under an argon atmosphere.

Phenyl 3,4,6-Tri-O-benzyl-1-seleno- $\beta$-d-glucopyranoside (13). A mixture of $15^{14}(24.5 \mathrm{~g}, 67.6 \mathrm{mmol})$ and NaOMe ( $28 \%$ in $\mathrm{MeOH}, 2.7 \mathrm{~mL}$ ) in $\mathrm{MeOH} / \mathrm{THF}(30 \mathrm{~mL} / 70 \mathrm{~mL}$ ) was
(20) Watanabe, Y.; K omoda, Y.; Ebisuya, K.; Ozaki, S. Tetrahedron Lett. 1990, 31, 255-256.
stirred at room temperature for 1 h . The reaction mixture was evaporated and azeotroped with toluene (three times). A solution of the residue in DMF ( 150 mL ) was added to a suspension of $\mathrm{NaH}(60 \%, 13.5 \mathrm{~g}, 338 \mathrm{mmol})$ in DMF/HMPA $\left(300 \mathrm{~mL} / 100 \mathrm{~mL}\right.$ ) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 30 min . $\mathrm{BnBr}(32 \mathrm{~mL}, 270 \mathrm{mmol})$ was added to the reaction mixture at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature for 10 h . After addition of MeOH $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, the mixture was partitioned between AcOEt $(700 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{~mL})$, and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}\left(500 \mathrm{~mL}\right.$, twice) and brine ( 300 mL ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography ( $\mathrm{SiO}_{2}$, hexane/AcOEt, 4:1) to give 16 (27.7 g). A mixture of the obtained 16, PhSeH ( $8.5 \mathrm{~mL}, 54 \mathrm{mmol}$ ), and molecular sieves 3 A powder ( 5.0 g ) in $\mathrm{CH}_{3} \mathrm{NO}_{2}(75 \mathrm{~mL})$ was heated under reflux for 6 h . The reaction mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}(500 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(400 \mathrm{~mL})$, and the organic layer was washed with aqueous $\mathrm{NaOH}(1 \mathrm{M}, 300$ $\mathrm{mL}), \mathrm{H}_{2} \mathrm{O}(400 \mathrm{~mL})$, aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, 400 mL ), and brine ( 300 mL ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give crude 17. A mixture of the crude $\mathbf{1 7}$ and NaOMe ( $28 \%$ in $\mathrm{MeOH}, 2.0$ mL ) in $\mathrm{THF} / \mathrm{MeOH}$ ( $20 \mathrm{~mL} / 40 \mathrm{~mL}$ ) was stirred at room temperature for 3 h and then evaporated. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt, 10:1-8:1) to give 13 ( $39 \mathrm{~g}, 59 \%$ from 15 as an oil): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.69-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.19(\mathrm{~m}, 18 \mathrm{H})$, 4.89 (d, $1 \mathrm{H}, \mathrm{J}=11.3$ ), 4.83 (d, $1 \mathrm{H}, \mathrm{J}=10.9$ ), $4.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=10.9), 4.72(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.9), 4.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.9 \mathrm{~Hz})$, 4.56 (d, $1 \mathrm{H}, \mathrm{J}=10.9), 4.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.9), 3.78(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}=2.0,11.0), 3.74(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.1,11.0), 3.6(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 8.7, 8.9), 3.56 (dd, 1 H, J = 8.7, 8.7), 3.51 (m, 1 H ), 3.48 (dd, $1 \mathrm{H}, \mathrm{J}=8.9,10.9$ ); ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 129.03$, $128.45,128.35,128.30,127.94,127.87,127.73,127.72,127.58$, $127.51,126.63,85.72,84.70,80.47,77.28,75.27,75.01,73.24$, 69.93; FAB-LRMS m/z $591\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{O}_{5}$ Se: C, 67.23; H, 5.81. Found: C, 67.21; H, 5.81.

9-(2-O-tert-Butyldimethylsilyl-5-O-trityl- $\beta$-d-ribofuranosyl)adenine (18). A suspension of $\mathrm{AgNO}_{3}$ (19.6 g, 116 mmol ), TBSCl ( $23 \mathrm{~g}, 154 \mathrm{mmol}$ ), and 5'-O-trityladenosine ${ }^{21}$ ( $39.2 \mathrm{~g}, 77 \mathrm{mmol}$ ) in $\mathrm{THF} /$ pyridine $(250 \mathrm{~mL} / 220 \mathrm{~mL})^{22}$ was stirred at room temperature for 15 h . After addition of MeOH $(6.2 \mathrm{~mL})$, the mixture was filtered through Celite, evaporated, and crystallized from hexane/AcOEt to give 18 ( 22.6 g ). The mother liquid was evaporated and dissolved in $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{MeOH}$ $(5 \mathrm{~mL} / 100 \mathrm{~mL})$. The mixture was stirred at room temperature for 24 h , evaporated, and crystallized from hexane/AcOEt to give further 18 ( 11.0 g ): total $36.6 \mathrm{~g}, 66 \%$ as a white solid; ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 8.23$ (s, 1 H ), 7.98 (s, 1 H ), $7.45-$ $7.18(\mathrm{~m}, 15 \mathrm{H}), 5.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.3), 5.54(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=5.3,5.3$ ), $4.33(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}=3.3,10.6$ ), $3.37(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.0,10.6), 2.69(\mathrm{~d}, 1 \mathrm{H}), 0.82$ (s, 9 H ), -0,03 (s, 3 H ), -0.15 (s, 3 H ); FAB-HRMS calcd for $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Si} 624.3006\left(\mathrm{MH}^{+}\right)$, found 624.2999.

9-(2-O-tert-Butyldimethylsilyl-3-deoxy-3-methylene-5-O-trityl- $\beta$-d-erythro-pentofuranosyl)adenine (19). $\mathrm{CrO}_{3}$ ( $12.4 \mathrm{~g}, 124 \mathrm{mmol}$ ) was slowly added to a solution of pyridine ( $30 \mathrm{~mL}, 272 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL}$ ) containing molecular sieves $4 \mathrm{~A}(30 \mathrm{~g})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 30 min . After addition of $\mathrm{Ac}_{2} \mathrm{O}(11.7 \mathrm{~mL}, 124$ mmol ), the mixture was stirred at room temperature for 30 min. A solution of $\mathbf{1 8}(15.5 \mathrm{~g}, 24.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was slowly added to the mixture at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature for 2 h . The mixture was partitioned between $\mathrm{CHCl}_{3}(300 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(400 \mathrm{~mL})$, and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(400 \mathrm{~mL})$ and brine ( 300 mL ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography ( $\mathrm{SiO}_{2}$, hexane/AcOEt, 1:2-1:10) to give 2'-O-TBS-5'-O-trityl-3'-ketoadenosine (16 g) After a mixture of $\mathrm{NaOCMe}_{2} \mathrm{Et}(95 \%, 8.94 \mathrm{~g}, 77 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{PM} \operatorname{eBr}(30.3 \mathrm{~g}, 84.8 \mathrm{mmol})$ in THF ( 350 mL ) was stirred

[^6]at room temperature for 2 h , a solution of the obtained $2^{\prime}-\mathrm{O}-$ TBS-5'-O-trityl-3'-ketoadenosine in THF ( 80 mL ) was added at $-78^{\circ} \mathrm{C}$, and the resulting mixture was warmed to $0^{\circ} \mathrm{C}$ over 1 h and stirred at the same temperature for 48 h . After addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, 50 mL ), the reaction mixture was partitioned between AcOEt ( 500 mL ) and $\mathrm{H}_{2} \mathrm{O}$ ( 300 mL ), and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ (300 mL ) and brine ( 300 mL ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography ( $\mathrm{SiO}_{2}$, hexane/ AcOEt, 1:1) to give 19 ( $9.2 \mathrm{~g}, 72 \%$ as a white solid): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.17(\mathrm{~m}$, 15 H ), 5.85 (d, $1 \mathrm{H}, \mathrm{J}=6.6$ ), 5.53 (br s, 2 H ), 5.36 (m, 1 H ) $5.28(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $5.3,10.6$ ) 3.35 (dd, $1 \mathrm{H}, \mathrm{J}=3.3,10.6$ ), 0.78 (s, 9 H ), -0.05 ( s , $3 \mathrm{H}),-0.38(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 164.46$, 152.66, 151.80, 149.41, 146.73, 143.35, 141.31, 133.53, 132.47, $128.58,128.46,128.15,127.69,127.66,127.02,122.92,109.14$, 88.07, 86.92, 79.96, 77.22, 76.39, 66.20, 25.42, 17.79, -4.88, -5.28; FAB-HRMS calcd for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{Si} 620.3057\left(\mathrm{MH}^{+}\right)$, found 620.3043. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 69.76$; H , 6.67; N, 11.30. Found: C, 69.74; H, 6.69; N, 10.91

N ${ }^{6}$-Benzoyl-9-(2-O-tert-butyldimethylsilyl-3-deoxy-3-methylene-5-O-trityl- $\beta$-D-erythro-pentofuranosyl)adenine (20). A mixture of 19 ( $7.74 \mathrm{~g}, 12.5 \mathrm{mmol}$ ), $\mathrm{BzCl}(5.8 \mathrm{~mL}$, 50 mmol ), and DMAP ( $150 \mathrm{mg}, 1.2 \mathrm{mmol}$ ) in pyridine ( 70 mL ) was stirred at room temperature for 2 h . After addition of aqueous $\mathrm{NH}_{3}(25 \%, 20 \mathrm{~mL})$, the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min and evaporated. The residue was purified by column chromatography ( $\mathrm{SiO}_{2}$, hexane/AcOEt, 3:2) to give 20 ( 8.56 g , $95 \%$ as a white amorphous sol id): ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right)$ $\delta 9.02$ (br s, 1 H ), 8.75 (s, 1 H ), 8.21 (s, 1 H$), 8.05-7.19$ (m, 20 $\mathrm{H}), 6.08(\mathrm{~m}, 1 \mathrm{H}), 5.96(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.3), 5.34(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.3$, 2.3), 5.18 (dd, $1 \mathrm{H}, \mathrm{J}=2.0,2.0$ ), 4.86 ( $\mathrm{m}, 1 \mathrm{H}$ ), 3.50 (dd, 1 H , $\mathrm{J}=4.6,10.2$ ), 3.41 (dd, $1 \mathrm{H}, \mathrm{J}=3.3,10.2$ ), $0.80(\mathrm{~s}, 9 \mathrm{H}),-0.03$ (s, 3 H), -0.39 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 164.56$, 152.28, 150.50, 150.27, 146.37, 142.56, 133.34, 132.67, 128.62, 127.81, 123.95, 108.61, 91.35, 82.87, 74.71, 65.56, 25.44, 17.74, $-4.90,-5.54 ;$ FAB-HRMS calcd for $\mathrm{C}_{43} \mathrm{H}_{46} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Si} 724.3319$ $\left(\mathrm{MH}^{+}\right)$, found 724.3378. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Si} \cdot$ $1.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 68.77$; H, 6.44; N, 9.33. Found: C, 68.90; H, 6.11; N, 9.45.
N ${ }^{6}$-Benzoyl-9-(2-O-tert-butyldimethylsilyl-3-deoxy-3-methylene- $\beta$-D-erythro-pentofuranosyl)adenine (14). To a solution of $20(4.0 \mathrm{~g}, 6.45 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$ was added aqueous TFA $(80 \%, 10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature for 15 min . The reaction mixture was partitioned between $\mathrm{CHCl}_{3}(150 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{~mL})$, and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(70$ mL , twice), aqueous $\mathrm{NaHCO}_{3}$ (saturated, 70 mL ), and brine ( 70 mL ), dried ( $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ), and evaporated. The residue was purified by column chromatography ( $\mathrm{SiO}_{2}$, hexane/AcOEt 1:3) to give 14 ( $2.6 \mathrm{~g}, \mathbf{8 4 \%}$ as a white amorphous solid): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 9.17$ (br s, $\left.1 \mathrm{H}, \mathrm{NH}\right), 8.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2)$, 8.03 (s, $1 \mathrm{H}, \mathrm{H}-8$ ), 8.06-7.46 (m, $5 \mathrm{H}, \mathrm{Ar}), 5.72$ (m, $1 \mathrm{H}, 5^{\prime}-$ OH ), 5.60 ( $\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime}$, J = 7.6 ), $5.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{z}^{\prime}\right), 5.34(\mathrm{~m}$, $1 \mathrm{H},=\mathrm{CHaHb}), 5.28(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CHaHb}), 4.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right)$, 4.06 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}$ ), 3.72 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{s}^{\prime} \mathrm{b}$ ), 0.81 ( $\mathrm{s}, 9 \mathrm{H}, \mathrm{tBu}$ ), -0.09 (s, $3 \mathrm{H}, \mathrm{Me}$ ), -0.53 (s, $3 \mathrm{H}, \mathrm{Me}$ ); FAB-HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Si} 482.2223\left(\mathrm{MH}^{+}\right)$, found 482.2209. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 59.85 ; \mathrm{H}, 6.49 ; \mathrm{N}, 14.54$. Found: C, 59.77; H, 6.55; N, 14.44.
$\mathrm{N}^{6}$-Benzoyl-9-[3-deoxy-3-(4,5,7-tri-O-benzyl-2,6-anhydro-1-deoxy-D-glycero-D-ido-heptitol-1-yl)- $\beta$-D-xylo-pentofuranosyl]adenine (21), $\mathbf{N}^{6}$-benzoyl-9-[3-deoxy-3-(4,5,7-tri-O-benzyl-2,6-anhydro-1-deoxy-D-gl ycero-D-gulo-heptitol-1-yl)- $\beta$-D-xylo-pentofuranosyl]adenine (22), and 1-Deoxy-3,4,6-tri-O-benzyl-d-glucopyranose (23). BuLi ( 1.50 M in hexane, $150 \mu \mathrm{~L}, 225 \mu \mathrm{~mol}$ ) was slowly added to a solution of 13 ( $120 \mathrm{mg}, 204 \mu \mathrm{~mol}$ ) in THF ( 5 mL ) at $-78^{\circ} \mathrm{C}$, and after the resulting mixture was stirred at the same temperature for 5 $\mathrm{min}, \mathrm{Me}_{2} \mathrm{SiCl}_{2}(173 \mu \mathrm{~L}, 1430 \mu \mathrm{~mol})$ was added. The mixture was warmed to room temperature over 6 h , and the solvent was removed with argon stream. After the resulting oil was dried in vacuo at room temperature for 2 h , a solution of $\mathbf{1 4}$ ( $108 \mathrm{mg}, 224 \mu \mathrm{~mol}$ ) in THF ( 1 mL ) and $\mathrm{Et}_{3} \mathrm{~N}(125 \mu \mathrm{~L}, 896$
$\mu \mathrm{mol}$ ) was added to a solution of the above residue in THF (4 mL ) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 1 h . The resulting mixture was partitioned between AcOEt $\left(50 \mathrm{~mL}\right.$ ) and aqueous $\mathrm{NaHCO}_{3}$ (saturated, 70 mL ), and the organic layer was washed with aqueous $\mathrm{NaHCO}_{3}$ (saturated, $70 \mathrm{~mL})$ and brine ( 70 mL ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give 12, which was used for the next reaction without purification due to its instability. To a solution of the obtained $\mathbf{1 2}$ in benzene ( 19 mL ) was added a solution of $\mathrm{Bu}_{3} \mathrm{SnH}(71 \mu \mathrm{~L}, 266$ $\mu \mathrm{mol})$ and AIBN ( $15 \mathrm{mg}, 93 \mu \mathrm{~mol}$ ) in benzene ( 5 mL ) at $80^{\circ} \mathrm{C}$ slowly over 1.2 h , and then the resulting mixture was evaporated. A mixture of the resulting residue and TBAF ( 1 M in THF , $532 \mu \mathrm{~L}, 532 \mu \mathrm{~mol}$ ) was stirred at room temperature for 1 h and then evaporated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} / \mathrm{MeOH}, 50: 1-10: 1\right)$ to give $\mathbf{2 3}$ ( $14 \mathrm{mg}, 25 \%$ as a white solid) and a mixture of 21 and 22 ( $57 \mathrm{mg}, 35 \%$ as an oil, $\mathbf{2 1 / 2 2}=28: 72$ ). F or $21\left(3^{\prime} \beta, 1^{\prime \prime} \alpha\right)$ : ${ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2)$, $8.65(\mathrm{~s}, 1 \mathrm{H}$, H-8), 8.08 (m, 2 H, Ar), 7.65 (m, 1 H, Ar), 7.55 (m, $2 \mathrm{H}, \mathrm{Ar}$ ), 7.24 (m, $15 \mathrm{H}, \mathrm{Ar}$ ), 5.91 ( $\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{J}=7.0$ ), 4.88 (m, 1 H , PhCH 2 ), 4.81 (dd, $1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J}=7.0,10.3$ ), 4.73 (d, $1 \mathrm{H}, \mathrm{PhCH}_{2}$, $\mathrm{J}=4.7), 4.71\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{PhCH}_{2}, \mathrm{~J}=4.7\right), 4.47\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{PhCH}_{2}\right)$, 4.37 (m, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.05$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}$ ), 3.83 (m, $4 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$, H-5", H-5'a, H-5'b), 3.72 (dd, 1 H, H-4', J = 7.9, 7.9), 3.63 (m, $\left.2 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{a}, \mathrm{H}-6^{\prime \prime} \mathrm{b}\right), 3.44$ (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{J}=7.9,7.9$ ), 2.69 (m, $\left.1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 2.34\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\mathrm{CHaHb}\right), 2.14\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\mathrm{CHaHb}\right)$; FAB-HRMS calcd for $\mathrm{C}_{45} \mathrm{H}_{48} \mathrm{~N}_{5} \mathrm{O}_{9} 802.3415\left(\mathrm{MH}^{+}\right)$, found 802.3397. For $22\left(3^{\prime} \beta, 1^{\prime \prime} \beta\right)$ : ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 8.66$ ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8$ ), $8.07-7.14$ (m, $20 \mathrm{H}, \mathrm{Ar}$ ), 5.89 (d, $1 \mathrm{H}, \mathrm{H}-\mathrm{I}^{\prime}$, $\mathrm{J}=7.0), 4.96\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{PhCH}_{2}, \mathrm{~J}=11.1\right), 4.79\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right.$, $\mathrm{J}=11.1), 4.75\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{PhCH}_{2}, \mathrm{~J}=10.9\right), 4.73\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$, $\mathrm{J}=7.0,10.6), 4.51\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{PhCH}_{2}, \mathrm{~J}=11.1\right), 4.44(\mathrm{~m}, 3 \mathrm{H}$, H-4', PhCH 2 ), 3.97 ( $d, 1$ H, H-5'a, J = 11.0), 3.81 ( $d, 1$ H, H-5'b, $\mathrm{J}=11.0$ ), 3.65 ( $\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{a}, \mathrm{J}=9.7$ ), 3.58 (dd, $1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{b}$, $\mathrm{J}=4.4,10.6), 3.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-5^{\prime \prime}\right), 3.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime \prime}\right)$, 3.36 (m, $\left.2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}\right), 2.66$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$ ), 2.39 (dd, 1 H , $\left.3^{\prime}-\mathrm{CHaHb}, \mathrm{J}=4.7,14.4\right), 1.88\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\mathrm{CHaHb}\right) ;$ FAB-HRMS calcd for $\mathrm{C}_{45} \mathrm{H}_{48} \mathrm{~N}_{5} \mathrm{O}_{9} 802.3415\left(\mathrm{MH}^{+}\right)$, found 802.3384. For 23: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.37-7.16(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar})$, $4.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.61(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 4.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.01(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, \mathrm{J}=5.4$, 11.2), 3.70 (m, 3 H, H-2, H-6a, H-6b), 3.59 (dd, 1 H, H-4, J = 9.2, 9.2), 3.45 (dd, $1 \mathrm{H}, \mathrm{H}-3, \mathrm{~J}=9.2,9.2$ ), 3.41 (ddd, $1 \mathrm{H}, \mathrm{H}-5$, $\mathrm{J}=2.3,3.9,9.2$ ), 3.21 (dd, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}, \mathrm{~J}=11.2,11.2$ ), $2.10(\mathrm{~d}$, $1 \mathrm{H}, 2-\mathrm{OH}, \mathrm{J}=3.2$ ); $\mathrm{FAB}-\mathrm{HRMS}$ calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{O}_{5} 435.2171$ $\left(\mathrm{MH}^{+}\right)$, found 435.2165 .
$\mathrm{N}^{6}$-Dibenzoyl-9-[2-O-benzoyl-3-deoxy-3-(3-O-benzoyl-4,5,7-tri-O-benzyl-2,6-anhydro-1-deoxy-d-gl ycero-d-ido-heptitol-1-yl- $\beta$-D-xylo-pentofuranosyl]adenine (21'). A soIution of $21(24 \mathrm{mg}, 30 \mu \mathrm{~mol}), \mathrm{BzCl}(35 \mu \mathrm{~L}, 300 \mu \mathrm{~mol})$, and DMAP ( $1 \mathrm{mg}, 8 \mu \mathrm{~mol}$ ) in pyridine ( 1 mL ) was stirred at room temperature for 1 h . The resulting mixture was partitioned between AcOEt ( 8 mL ) and aqueous $\mathrm{NaHCO}_{3}$ (saturated, 6 mL ), and the organic layer was washed with aqueous $\mathrm{NaHCO}_{3}$ (saturated, 6 mL ) and brine ( 7 mL ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt $\left.2: 1\right)$ to give $\mathbf{2 1}^{\prime}(26 \mathrm{mg}, 71 \%$ as a white solid): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2)$, 8.30 (s, 1 H, H-8), 8.10-7.10 (m, $40 \mathrm{H}, \mathrm{Ar}$ ), 6.31 (dd, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$, $\mathrm{J}=5.7,7.7$ ), $6.19\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{J}=5.7\right), 5.28$ (dd, $1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$, $\mathrm{J}=4.9,7.5), 4.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.72\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{~J}=\right.$ 11.3), 4.67 (d, $1 \mathrm{H}, \mathrm{PhCH}_{2}, \mathrm{~J}=11.3$ ), $4.65\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right.$, J $=11.3$ ), 4.62 (dd, $\left.1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}, \mathrm{J}=3.3,12.4\right), 4.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime \prime}\right.$, $\left.\mathrm{PhCH}_{2}\right), 4.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.41$ (dd, $1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}, \mathrm{J}=4.5$, 12.4), 3.92 (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{J}=7.5,7.5$ ), 3.82 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}$ ), 3.75 (dd, $1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{a}$, J = 5.6, 10.6), 3.65 (dd, $1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}$, J = 7.5, 7.5), 3.62 (dd, 1 H, H-6"b, J = 2.6, 10.6), 3.21 (m, 1 H, $\left.\mathrm{H}-3^{\prime}\right), 2.77\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\mathrm{CHaHb}\right), 2.00\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\mathrm{CHaHb}\right)$; FABHRMS calcd for $\mathrm{C}_{73} \mathrm{H}_{63} \mathrm{~N}_{5} \mathrm{O}_{13} \mathrm{Na} 1240.4320\left(\mathrm{MNa}^{+}\right)$, found 1240.4340. NOE experiments were carried out in $\mathrm{CDCl}_{3}$ at 400 MHz .
$\mathrm{N}^{6}$-Dibenzoyl-9-[2-0-benzoyl-3-deoxy-3-(3-O-benzoyl-4,5,7-tri-O-benzyl-2,6-anhydro-1-deoxy-D-gl ycero-d-gulo-heptitol-1-yl)- $\beta$-D-xylo-pentofuranosyl]adenine (22). Compound 22 was prepared from $22(10 \mathrm{mg}, 12 \mu \mathrm{~mol})$ by the
procedure described for the synthesis of 21'. The resulting residue was purified by column chromatography ( $\mathrm{SiO}_{2}$, hexane/ AcOEt $2: 1$ ) to give $\mathbf{2 2}$ ( $13 \mathrm{mg}, 89 \%$ as a white solid): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 8.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 7.98-$ 7.06 (m, $40 \mathrm{H}, \mathrm{Ar}), 6.22$ (m, $\left.2 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{H}-2^{\prime}\right), 5.20$ (dd, 1 H , $\mathrm{H}-2^{\prime \prime}, \mathrm{J}=9.2,9.2$ ), $4.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.77\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right.$, J $=10.8$ ), $4.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}, \mathrm{PhCH}_{2}\right), 4.65\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right.$, J $=11.3), 4.61\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{PhCH}_{2}, \mathrm{~J}=11.1\right), 4.54(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-5$ 'b, $\mathrm{J}=5.6,12.3), 4.51\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{PhCH}_{2}, \mathrm{~J}=10.8\right), 4.46(\mathrm{~s}, 2 \mathrm{H}$, PhCH 2 ), 3.76 (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{J}=9.2,9.2$ ), 3.72 (dd, $1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}$, J = 9.2, 9.2), 3.65 (m, 2 H, H-1", H-6"a), 3.57 (dd, 1 H, H-6"b, $\mathrm{J}=5.0,10.6$ ), $3.48\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 3.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 2.11$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{CHaHb}$ ), 1.96 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}$ aHb); FAB-HRMS calcd for $\mathrm{C}_{73} \mathrm{H}_{63} \mathrm{~N}_{5} \mathrm{O}_{13} \mathrm{Na} 1240.4320\left(\mathrm{MH}^{+}\right)$, found 1240.4310. NOE experiments were carried out in $\mathrm{CDCl}_{3}$ at 400 MHz .
3,4,6-Tri-O-p-methoxybenzyl-1,2-0-(1-methoxyeth-ylidene)- $\alpha$-D-glucopyranose (26). Compound 26 was prepared from $15^{14}(15.4 \mathrm{~g}, 42 \mathrm{mmol})$ by the procedure described for the synthesis of 16 with $\mathrm{PMBCI}(17.6 \mathrm{~mL}, 174 \mathrm{mmol})$ instead of BnBr . The resulting residue was purified by column chromatography ( $\mathrm{SiO}_{2}$, hexane/AcOEt, 4:1-2.5:1) to give 26 ( $19.3 \mathrm{~g}, 77 \%$ as an oil): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.31-$ 6.76 (m, 12 H), 6.60 (m, 1 H ), 4.64-4.29 (m, 7 H), 3.84-3.56 (m, 14 H ), $3.28(\mathrm{~m}, 3 \mathrm{H}), 2.04(\mathrm{~m}, 3 \mathrm{H})$; FAB-HRMS calcd for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{O}_{10} 597.2699\left(\mathrm{MH}^{+}\right)$, found 597.2675.
Phenyl 3,4,6-Tri-O-p-methoxybenzyl-1-seleno- $\beta$-d-glucopyranoside (27). Compound 27 was prepared from 26 (4.28 $\mathrm{g}, 7.17 \mathrm{mmol}$ ) by the procedure described for the synthesis of 13. The resulting residue was purified by column chromatography ( $\mathrm{SiO}_{2}$, hexane/AcOEt, 4:1-3:2) to give $\mathbf{2 7}$ ( $3.24 \mathrm{~g}, 66 \%$ as a white solid): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.31-6.81$ (m, $17 \mathrm{H}, \mathrm{Ar}), 4.80\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{PhCH}_{2}, \mathrm{~J}=11.0\right), 4.77\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right.$, $\mathrm{J}=11.0), 4.72\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{PhCH}_{2}, \mathrm{~J}=11.3\right), 4.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1)$, $4.54\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{~J}=11.3\right), 4.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 3.78(\mathrm{~m}$, $9 \mathrm{H}, 3 \times \mathrm{OCH}_{3}$ ), 3.72-3.45 (m, 6 H, H-2, H-3, H-4, H-5, H-6a, $\mathrm{H}-6 \mathrm{~b})$; $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3100 \mathrm{MHz}\right) \delta 158.96,158.94,158.82$, $134.80,130.40,130.11,130.01,129.40,129.37,129.11,128.81$, 127.97, 126.60, 113.72, 113.58, 113.53, 85.32, 84.56, 80.40, 76.95, 74.85, 74.57, 73.09, 72.94, 68.45, 55.20; FAB-HRMS calcd for $\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{O}_{8} \mathrm{Se} 681.1966\left(\mathrm{MH}^{+}\right)$, found 681.1968. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{8} \mathrm{Se}: \mathrm{C}, 63.62 ; \mathrm{H}, 5.93$. F ound: C, 63.46; H, 6.02 .

5-O-tert-Butyldimethylsilyl-3-deoxy-3-methylene-1,2-O-(1-methylethylidene)- $\alpha$-D-erythro-pentofuranose (29). After a mixture of $\mathrm{NaOCMe}_{2} \mathrm{Et}(95 \%, 2.72 \mathrm{~g}, 23.5 \mathrm{mmol}$ ) and $\mathrm{Ph}_{3} \mathrm{PMeBr}(8.67 \mathrm{~g}, 24.3 \mathrm{mmol})$ in THF ( 150 mL ) was stirred for 2 h , a solution of $\mathbf{2 8}^{19}(2.37 \mathrm{~g}, 7.83 \mathrm{mmol})$ in THF ( 30 mL ) was added at $-78^{\circ} \mathrm{C}$, and the reaction mixture was warmed to room temperature over 6 h and stirred for 3 h at the same temperature. After addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated, 10 mL ), the reaction mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ (300 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$, and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and brine ( 150 mL ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography ( $\mathrm{SiO}_{2}$, hexane/AcOEt, $5: 1$ ) to give $\mathbf{2 9}(2.16 \mathrm{~g}, 92 \%$ as an oil): $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl} 3,270 \mathrm{MHz}\right) \delta 5.83(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.4), 5.40$ $(\mathrm{m}, 1 \mathrm{H}), 5.24(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=4.0,10.7$ ), $3.65(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.0,10.7), 1.48(\mathrm{~s}, 3 \mathrm{H})$, $1.37(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 67.5$ $\mathrm{MHz}) \delta 147.25,112.12,111.21,104.69,81.76,80.63,65.57$, 27.51, 27.26, 25.80, -5.37, -5.43; FAB-LRMS m/z $301\left(\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{O}_{4}-\right.$ Si); FAB-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{Si} 301.1835\left(\mathrm{MH}^{+}\right)$, found 301.1847.

3-Deoxy-3-methylene-1,2-0-(1-methylethylidene)- $\alpha-\mathrm{D}-$ erythro-pentofuranose (30). A mixture of $\mathbf{2 9}$ ( $15 \mathrm{~g}, 50 \mathrm{mmol}$ ) and TBAF ( 1 M in THF, $55 \mathrm{~mL}, 55 \mathrm{mmol}$ ) in THF ( 100 mL ) was stirred at room temperature for 1 h and then evaporated. The resulting residue was purified by column chromatography ( $\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} / \mathrm{EtOH}, 30: 1$ ) to give 30 ( $8.84 \mathrm{~g}, 95 \%$ as an oil): ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.87(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1$, J $=4.1$ ), 5.48 $(\mathrm{m}, 1 \mathrm{H},=\mathrm{CHaHb}), 5.19(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CHaHb}), 4.92(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{H}-2, \mathrm{~J}=0.9,4.1$ ), $4.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.88(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}, \mathrm{J}=$ 2.3, 12.0), 3.67 (dd, $1 \mathrm{H}, \mathrm{H}-5 \mathrm{~b}, \mathrm{~J}=4.7,12.0$ ), 1.52 ( $\mathrm{s}, 3 \mathrm{H}$,
 $112.23,111.85,104.11,81.74,79.92,63.30,27.31,27.04$; FAB-

HRMS cal cd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{4}$ 185.0814, found $185.0815\left[(\mathrm{M}-\mathrm{H})^{+}\right]$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4}$ : C, 58.05; H, 7.58. Found: C, 57.78; H, 7.50 .

Dimethylsilyl-Tethered Substrate (24). BuLi (1.55 M in hexane, $4.33 \mathrm{~mL}, 6.71 \mathrm{mmol}$ ) was slowly added to a solution of $27(5.73 \mathrm{~g}, 6.39 \mathrm{mmol})$ in THF ( 100 mL ) at $-78^{\circ} \mathrm{C}$, and after the resulting mixture was stirred at the same temperature for $5 \mathrm{~min}, \mathrm{Me}_{2} \mathrm{SiCl}_{2}(5.43 \mathrm{~mL}, 44.8 \mathrm{mmol})$ was added. The mixture was warmed to room temperature over 6 h , and the solvent was removed with argon stream. After the resulting oil was dried in vacuo at room temperature for 5 h , a solution of $\mathbf{3 0}(1.43 \mathrm{~g}, 7.68 \mathrm{mmol})$ in THF ( 10 mL ) and $\mathrm{Et}_{3} \mathrm{~N}$ ( $3.56 \mathrm{~mL}, 25.5 \mathrm{mmol}$ ) was added to a solution of the residue in THF ( 90 mL ) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 2 h . The resulting mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}(400 \mathrm{~mL})$ and aqueous $\mathrm{NaHCO}_{3}$ (saturated, 300 mL ), and the organic layer was washed with aqueous $\mathrm{NaHCO}_{3}$ (saturated, 300 mL ) and brine ( 200 mL ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The resulting residue was purified by flash column chromatography ( $\mathrm{SiO}_{2}$, hexane/AcOEt, 3.5:1) to give $\mathbf{2 4}$ ( 3.95 $\mathrm{g}, 67 \%$ as an oil): ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.66-6.77$ (m, $17 \mathrm{H}, \mathrm{Ar}), 5.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1, \mathrm{~J}=4.1), 5.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHaHb})$, 5.16 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{CHaHb}$ ), 4.81 ( $\mathrm{m}, 5 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4, \mathrm{H}-1^{\prime}, \mathrm{PhCH}_{2}$ ), 4.65-4.43 ( $\mathrm{m}, 4 \mathrm{H}, \mathrm{PhCH}_{2}$ ), 3.93 (dd, $1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}, \mathrm{J}=3.8,11.2$ ), 3.80-3.73 (m, $10 \mathrm{H}, \mathrm{H}-5 \mathrm{~b}, 3 \times \mathrm{OCH}_{3}$ ), 3.71 (dd, $1 \mathrm{H}, \mathrm{H}-\mathrm{6}^{\prime} \mathrm{a}$, J $=1.8,11.0$ ), 3.66 (dd, $1 \mathrm{H}, \mathrm{H}-6^{\prime} \mathrm{b}, \mathrm{J}=4.5,11.0$ ), 3.59 (dd, 1 H , $\mathrm{H}-4^{\prime}, \mathrm{J}=9.5,9.5$ ), $3.48\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.47$ (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{J}=$ 9.5, 9.5), $3.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 1.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.37(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3}$ ), $0.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right)$; FAB-HRMS cal cd for $\mathrm{C}_{47} \mathrm{H}_{58} \mathrm{O}_{12} \mathrm{SeSiNa} 945.2760\left(\mathrm{MNa}^{+}\right)$, found 945.2824 . Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{58} \mathrm{O}_{12} \mathrm{SeSi}$ : C, 61.23; H, 6.34. Found: C, 61.08; H, 6.44.

3-Deoxy-3-(4,5,7-tri-O-p-methoxybenzyl-2,6-anhydro-1-deoxy-d-gl ycero-D-ido-heptitol-1-yl)-1,2-0-(1-methyleth-ylidene)- $\alpha-$-D-ribo-pentofuranose (25) and 3-Deoxy-3-(4,5,7-tri-O-p-methoxybenzyl-2,6-anhydro-1-deoxy-D-glycero-D-gulo-heptitol-1-yl)-1,2-0-(1-methylethylidene)- $\alpha-$ D-ri bopentofuranose (31), and 1-Deoxy-3,4,6-tri-O-p-methoxy-benzyl-d-glucopyranose (32). To a solution of $\mathbf{2 4}(100 \mathrm{mg}$, $108 \mu \mathrm{~mol}$ ) in benzene ( 15 mL ) was added a solution of $\mathrm{Bu}_{3^{-}}$ $\mathrm{SnH}(58 \mu \mathrm{~L}, 216 \mu \mathrm{~mol})$ and AIBN ( $9 \mathrm{mg}, 55 \mu \mathrm{~mol}$ ) in benzene ( 5 mL ) slowly over 1.2 h at $80^{\circ} \mathrm{C}$, and then the resulting mixture was evaporated. A mixture of the resulting residue and TBAF ( 1 M in THF, $270 \mu \mathrm{~L}, 270 \mu \mathrm{~mol}$ ) was stirred at room temperature for 1 h and evaporated. The residue was purified by column chromatography ( $\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} / \mathrm{AcOEt}^{2} 2.5: 1-1: 4$ ) to give 32 ( $14 \mathrm{mg}, 25 \%$ as a solid) and a mixture of $\mathbf{2 5}$ and 31 ( $55 \mathrm{mg}, \mathbf{7 2 \%}$ as an oil, $\mathbf{2 5} / \mathbf{3 1}=70: 30$ ). From the mixture, 25 ( $38 \mathrm{mg}, 50 \%$ ) and 31 ( $16 \mathrm{mg}, 22 \%$ ) were obtained in a pure form by flash column chromatography ( $\mathrm{SiO}_{2}$, hexane/AcOEt 5:1-2:1). For 25: ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.28-6.81$ (m, $12 \mathrm{H}, \mathrm{Ar}), 5.74$ (d, $1 \mathrm{H}, \mathrm{H}-1, \mathrm{~J}=3.6$ ), 4.65 (dd, $1 \mathrm{H}, \mathrm{H}-2$, J = 4.1, 4.1), $4.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{PhCH}_{2}, \mathrm{~J}=11.3\right), 5.69-4.40(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{PhCH}_{2}$ ), 4.04 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime}$ ), 3.93 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$ ), 3.89-3.83 ( $\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-\mathrm{G}^{\prime} \mathrm{a}, \mathrm{H}-\mathrm{b}^{\prime} \mathrm{b}$ ), 3.82 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$ ), 3.81 ( $\mathrm{s}, 3 \mathrm{H}$, $\mathrm{OCH}_{3}$ ), 3.79 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$ ), 3.69 (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{J}=5.6,5.6$ ), $3.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-5 \mathrm{a}\right), 3.50(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{~b}, \mathrm{~J}=4.0,10.4)$, 3.46 (dd, $1 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{J}=5.6,5.6$ ), 2.93 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{2}^{\prime}-\mathrm{OH}$ ), 2.16 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$ ), $1.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 159.23,159.18$, 159.10, 129.96, 129.70, 129.55, 129.51, 129.28, 129.23, 113.84, 113.74, 113.68, 111.43, 104.89, 82.58, 82.38, 81.45, 81.27, $74.82,73.28,72.85,72.73,70.13,69.95,61.35,55.45,55.44$, 55.40, 55.29, 55.25, 55.11, 39.88, 26.99, 26.91, 26.55, 23.46; FAB-HRMS calcd for $\mathrm{C}_{39} \mathrm{H}_{50} \mathrm{O}_{12} \mathrm{Na} 733.3200\left(\mathrm{MNa}^{+}\right)$, found 733.3187. Anal. Cal cd for $\mathrm{C}_{39} \mathrm{H}_{50} \mathrm{O}_{12} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 64.27 ; \mathrm{H}, 7.19$. Found: C, 64.27; H, 7.21. For 31: ${ }^{12} \mathrm{H}$ NR ( $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$ ) $\delta 7.29-6.81(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}), 5.78(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1, \mathrm{~J}=3.2), 4.87(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{PhCH}_{2}$ ), $4.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.66$ (dd, $1 \mathrm{H}, \mathrm{H}-4, \mathrm{~J}=$ 3.2, 3.2), 4.56-4.35 (m, 4 H, PhCH 2 , H-5a), 3.84 ( $\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-2$, H-5a, H-6'a), 3.78 (m, $9 \mathrm{H}, 3 \times \mathrm{OCH}_{3}$ ), 3.59 (m, $2 \mathrm{H}, \mathrm{H}-5^{\prime}$, H-6'a), 3.49 (m, 1 H, H-4'), 3.42 (m, 1 H, 2-OH ), 3.41 (m, 1 H, H-3'), 3.29 (m, 1 H, H-2'), 3.24 (m, 1 H, H-1'), 2.29 (m, 1 H, $\mathrm{H}-3), 1.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; FAB-HRMS calcd for $\mathrm{C}_{39} \mathrm{H}_{50} \mathrm{O}_{12} \mathrm{Na} 733.3200\left(\mathrm{MNa}^{+}\right)$, found
733.3245. For 32: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.29-6.81$ (m, $12 \mathrm{H}, \mathrm{Ar}), 4.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.56$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{PhCH}_{2}$ ), $4.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.00(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{a}, \mathrm{J}$ $=5.3,11.1), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.65(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}), 3.52$ (dd, 1 H , $\mathrm{H}-4, \mathrm{~J}=9.3,9.3$ ), 3.39 (dd, $1 \mathrm{H}, \mathrm{H}-3, \mathrm{~J}=9.3,9.3$ ), 3.36 ( $\mathrm{m}, 1$ $\mathrm{H}, \mathrm{H}-5), 3.18$ (dd, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}, \mathrm{~J}=11.1,11.1$ ), $2.07(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{OH})$; FAB-HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{Na} 547.2308\left(\mathrm{MNa}^{+}\right)$, found 547.2287.

One-Pot Procedure for the Synthesis of 25 from 27 and 30. From 27 ( $800 \mathrm{mg}, 1.34 \mathrm{mmol}$ ) and $30(274 \mathrm{mg}, 1.47$ mmol ) by the one-pot procedure described for the synthesis of 21 and 22, 25 ( $472 \mathrm{mg}, 50 \%$ ), 31 ( $153 \mathrm{mg}, 16 \%$ ), and 32 (77 $\mathrm{mg}, 11 \%$ ) were obtained, after purification by flash column chromatography ( $\mathrm{SiO}_{2}$, hexane/AcOEt 2.5:1-2:1-1:2).
5-O-Benzoyl-3-deoxy-3-(3-O-benzoyl-4,5,7-tri-O-p-meth-oxybenzyl-2,6-anhydro-1-deoxy-d-gl ycero-D-ido-heptitol-1-yl)-1,2-0-(1-methylethylidene)- $\alpha$-d-ri bo-pentofuranose (25'). A solution of 25 ( $206 \mathrm{mg}, 290 \mu \mathrm{~mol}$ ), $\mathrm{Bz}_{2} \mathrm{O}$ (262 $\mathrm{mg}, 1.16 \mathrm{mmol}), \mathrm{DMAP}(3.5 \mathrm{mg}, 29 \mu \mathrm{~mol})$, and $\mathrm{Et}_{3} \mathrm{~N}(162 \mu \mathrm{~L}$, $1.16 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ was stirred at room temperature for 30 min . The resulting mixture was partitioned between AcOEt ( 25 mL ) and aqueous $\mathrm{NaHCO}_{3}$ (saturated, 20 mL ), and the organic layer was washed with aqueous $\mathrm{NaHCO}_{3}$ (saturated, 20 mL ) and brine ( 20 mL ), dried ( $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ), and evaporated. The residue was purified by col umn chromatography ( $\mathrm{SiO}_{2}$, hexane/AcOEt 2:1) to give $\mathbf{2 5}^{\prime}$ ( $213 \mathrm{mg}, 81 \%$ as a white solid): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.00(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 7.60-$ 7.32 (m, 6 H, Ar), 7.25-7.00 (m, 6 H, Ar), 6.90-6.70 (m, 6 H, Ar), 5.75 (d, $1 \mathrm{H}, \mathrm{H}-1$, J $=3.7$ ), 5.31 (dd, $1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J}=5.5$, 8.6), 4.67 ( $\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-2$, PMB-CH2), 4.51 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}$ ), 4.50 (d, $\left.1 \mathrm{H}, \mathrm{PMB}-\mathrm{CH}_{2}, \mathrm{~J}=11.3\right), 4.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{H}-5 \mathrm{~b}\right), 4.37$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{PMB}-\mathrm{CH}_{2}, \mathrm{~J}=10.6\right), 4.32\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{PMB}-\mathrm{CH}_{2}, \mathrm{~J}=11.7\right)$, 4.09 (ddd, 1 H, H-4, J $=2.8,4.5,10.2$ ), 3.88 (dd, 1 H, H-3', J $=8.0,8.0), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.73(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{OCH}_{3}$ ), 3.67 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}$ ), 3.64 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{b}^{\prime} \mathrm{a}$ ), 3.48 (d, $1 \mathrm{H}, \mathrm{H}-\mathrm{b}^{\prime} \mathrm{b}, \mathrm{J}=9.9$ ), $2.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.93(\mathrm{~m}, 1 \mathrm{H}$, $3-\mathrm{CHaHb}), 1.83$ (m, $1 \mathrm{H}, 3-\mathrm{CHaHb}$ ), 1.21 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ ), 1.15 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ ); FAB-HRMS calcd for $\mathrm{C}_{53} \mathrm{H}_{58} \mathrm{O}_{14} \mathrm{Na} 941.3724$ ( $\mathrm{MNa}^{+}$), found 941.3728. Anal. Calcd for $\mathrm{C}_{53} \mathrm{H}_{58} \mathrm{O}_{14}: \mathrm{C}, 69.27$; H, 6.36. Found: C, 69.07; H, 6.50. GOESY spectrum was measured in $\mathrm{CDCl}_{3}$ at 400 MHz .
5-O-Benzoyl-3-deoxy-3-(3-O-benzoyl-4,5,7-tri-O-p-meth-oxybenzyl-2,6-anhydro-1-deoxy-d-gl ycero-D-gulo-heptitol-1-yl)-1,2-0-(1-methylethylidene)- $\alpha$-d-ri bo-pentofuranose (31'). Compound 31' was prepared from 31 ( $202 \mathrm{mg}, 284$ $\mu \mathrm{mol})$ by the procedure described for the synthesis of $\mathbf{2 5 '}^{\prime}$. The resulting residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt 2:1) to give 31' ( $204 \mathrm{mg}, 78 \%$ as a white solid): ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.00(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 7.55$ (m, $2 \mathrm{H}, \mathrm{Ar}$ ), 7.42 (m, $4 \mathrm{H}, \mathrm{Ar}$ ), 7.22 (d, $2 \mathrm{H}, \mathrm{Ar}$ ), 7.05 (m, 4 H , Ar), 6.84 (m, $4 \mathrm{H}, \mathrm{Ar}$ ), 6.61 (m, $2 \mathrm{H}, \mathrm{Ar}$ ), 5.75 (d, $1 \mathrm{H}, \mathrm{H}-1$, J $=3.6$ ), 5.13 (dd, $1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J}=9.4,9.4$ ), 4.72 (dd, $1 \mathrm{H}, \mathrm{H}-2, \mathrm{~J}$ = 3.9, 3.9), 4.67 (m, 2 H, PMB-CH2), 4.55 (dd, $1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}, \mathrm{J}=$ 2.0, 12.2), 4.53 ( $\mathrm{d}, 1 \mathrm{H}, \mathrm{PMB}-\mathrm{CH}_{2}, \mathrm{~J}=10.9$ ), $4.50-4.36(\mathrm{~m}, 3$ $\mathrm{H}, \mathrm{PMB}-\mathrm{CH}_{2}$ ), 4.27 (dd, $1 \mathrm{H}, \mathrm{H}-5 \mathrm{~b}, \mathrm{~J}=5.3,12.4$ ), $4.11(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{H}-4), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.73(\mathrm{~m}, 1$ H, H-6'a), 3.72 (dd, 1 H, H-3', J = 9.2, 9.2), 3.68 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$ ), 3.63 (dd, $1 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{J}=9.2,9.2$ ), 3.59 (m, $1 \mathrm{H}, \mathrm{H}-6^{\prime} \mathrm{b}$ ), 3.55 (ddd, $1 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{J}=3.0,9.3,9.3$ ), $3.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 2.13(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-3$ ), 2.03 (ddd, $1 \mathrm{H}, 3-\mathrm{CHaHb} \mathrm{J}=9.2,9.2,13.5$ ), 1.72 (ddd, $1 \mathrm{H}, 3-\mathrm{CHaHb}, \mathrm{J}=3.2,3.2,14.6$ ), $1.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.23 (s, 3 H , CH ${ }_{3}$ ); FAB-HRMS calcd for $\mathrm{C}_{53} \mathrm{H}_{58} \mathrm{O}_{14} \mathrm{Na} 941.3724$ ( $\mathrm{MNa}^{+}$), found 941.3713. Anal. Calcd for $\mathrm{C}_{53} \mathrm{H}_{58} \mathrm{O}_{14}: \mathrm{C}, 69.27$; H, 6.36. Found: C, 69.21; H, 6.42. GOESY spectrum was measured in $\mathrm{CDCl}_{3}$ at 400 MHz .

5-O-Benzyl-3-deoxy-3-(3-O-benzyl-4,5,7-tri-O-p-meth-oxybenzyl-2,6-anhydro-1-deoxy-d-gl ycero-d-ido-heptitol-1-yl)-1,2-0-(1-methylethylidene)- $\alpha$-D-ribo-pentofuranose (33). A suspension of 25 ( $1.07 \mathrm{~g}, 1.5 \mathrm{mmol}$ ) and NaH ( $60 \%, 288 \mathrm{mg}, 7.2 \mathrm{mmol}$ ) in THF/DMF/HMPA ( $7 \mathrm{~mL} / 7 \mathrm{~mL} / 1$ mL ) prepared at $0^{\circ} \mathrm{C}$ was stirred at room temperature for 30 min . $\mathrm{BnBr}(568 \mu \mathrm{~L}, 4.8 \mathrm{mmol})$ was added to the mixture at 0 ${ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature for 3 h . After addition of $\mathrm{MeOH}(500 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$, the mixture
was partitioned between AcOEt ( 100 mL ) and $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{~mL})$, and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{~mL}$, twice) and brine ( 70 mL ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography ( $\mathrm{SiO}_{2}$, hexane/ AcOEt 2:1) to give 33 ( $958 \mathrm{mg}, 71 \%$ as a white solid): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.35-7.18(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}), 7.02(\mathrm{~m}, 2 \mathrm{H}$, Ar), 6.87-6.80 (m, $5 \mathrm{H}, \mathrm{Ar}$ ), 5.83 (d, $1 \mathrm{H}, \mathrm{H}-1, \mathrm{~J}=3.7$ ), 4.85$4.48(\mathrm{~m}, 9 \mathrm{H}, \mathrm{PhCH} 2), 4.37\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-1^{\prime}, \mathrm{PhCH}_{2}\right), 4.00$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$ ), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76$ ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$ ), 3.75-3.46 (m, $8 \mathrm{H}, \mathrm{H}-5 \mathrm{a}, \mathrm{H}-5 \mathrm{~b}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}$, H-5', H-6'a, H-6'b), 2.17 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$ ), 1.93 ( $\mathrm{m}, 1 \mathrm{H}, 3-\mathrm{CHaHb}$ ), $1.75(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{CHaHb})$, $1.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (CDCl $\left.3,100 \mathrm{MHz}\right) \delta 158.90,158.88,158.84,137.84$, $137.76,130.76,130.18,129.68,129.40,129.29,128.14,127.85$, 127.59, 127.41, 127.31, 113.50, 111.05, 104.95, 104.68, 82.06, 80.70, 80.48, 80.37, 80.06, 79.72, 79.59, 77.51, 75.20, 75.16, $74.74,73.42,73.33,72.94,72.79,72.60,71.56,71.04,69.08$, 68.07, 55.45, 55.37, 55.30, 55.28, 55.20, 55.12, 55.04, 54.94, $40.32,26.78,26.69,26.45,26.40,19.87$; FAB-HRMS calcd for $\mathrm{C}_{53} \mathrm{H}_{62} \mathrm{O}_{12} \mathrm{Na} 913.4139\left(\mathrm{MNa}^{+}\right)$, found 913.4178 . Anal. Calcd for $\mathrm{C}_{53} \mathrm{H}_{62} \mathrm{O}_{12}$ : C, 71.44; H, 7.01. Found: C, 71.46; $\mathrm{H}, 7.11$.

5-O-Benzyl-1,2-di-O-acetyl-3-deoxy-3-(3-0-benzyl-4,5,7-tri-O-acetyl-2,6-anhydro-1-deoxy-D-glycero-D-ido-heptitol1 -yl)- $\alpha, \beta$-d-ribo-pentofuranose (34). A solution of 33 ( 1.7 g , $1.9 \mathrm{mmol})$ in aqueous TFA ( $80 \%, 10 \mathrm{~mL}$ ) was stirred at room temperature for 3 h and then evaporated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} / \mathrm{MeOH} 50\right.$ : $1-4: 1$ ) to give an oil. A mixture of the oil obtained and NaOMe ( $28 \%$ in $\mathrm{MeOH}, 760 \mu \mathrm{~L}$ ) in $\mathrm{MeOH}(10 \mathrm{~mL}$ ) was stirred at room temperature for 30 min and then neutralized with Diaion WK 20 ( $\mathrm{H}^{+}$form). The resin was filtered off, and the filtrate was evaporated. A solution of the resulting residue, $\mathrm{Ac}_{2} \mathrm{O}(1.4 \mathrm{~mL}$, $14.8 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(2.12 \mathrm{~mL}, 15 \mathrm{mmol})$, and DMAP ( $23 \mathrm{mg}, 0.19$ $\mathrm{mmol})$ in $\mathrm{MeCN}(20 \mathrm{~mL})$ was stirred at room temperature for 1 h . The reaction mixture was partitioned between AcOEt (200 mL ) and aqueous $\mathrm{NaHCO}_{3}$ (saturated, 150 mL ), and the organic layer was washed with aqueous $\mathrm{NaHCO}_{3}$ (saturated, $150 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$, and brine ( 100 mL ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography ( $\mathrm{SiO}_{2}$, hexane/AcOEt, 2:1) to give 34 ( $932 \mathrm{mg}, 70 \%$ as a white solid): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.37-7.23$ (m, $10 \mathrm{H}, \mathrm{Ar}), 6.36(\mathrm{~d}, 0.26 \mathrm{H}, \mathrm{H}-1 \alpha, \mathrm{~J}=4.0), 6.09(\mathrm{~s}, 0.74 \mathrm{H}$, $\mathrm{H}-1 \beta$, ), 5.40 (dd, $0.26 \mathrm{H}, \mathrm{H}-2, \mathrm{~J}=4.0,6.8$ ), $5.32(\mathrm{~d}, 0.74 \mathrm{H}$, $\mathrm{H}-2, \mathrm{~J}=4.4), 5.25$ (dd, $\left.1 \mathrm{H}, \mathrm{H}-3^{\prime}, \mathrm{J}=9.3,9.3\right), 4.89(\mathrm{~m}, 1 \mathrm{H}$, H-4'), 4.64-4.48 (m, $4 \mathrm{H}, \mathrm{PhCH}_{2}$ ), 4.26-4.48 (m, $3 \mathrm{H}, \mathrm{H}-4$, H-5a, H-1'), 3.94 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{~b}$ ), 3.77-3.57 ( $\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-5^{\prime}$, H-6'a, H-6'b), 2.64-2.48 (m, 1 H, H-3), 2.07-1.78 (m, 17 H, 5 $\left.\times \mathrm{Ac}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.28,170,21$, 169.99, 169.68, 169.56, 169.49, 169.16, 169.02, 155.26, 137.68, $137.59,137.34,132.72,130.78,129.60,128.32,127.85,127.80$, 127.64, 127.57, 127.50, 127.22, 113.42, 110.08, 98.98, 95.31, 82.73, 82.19, 77.20, 76.05, 73.53, 73.33, 72.58, 72.36, 72.29, 71.70, 71.45, 70.17, 68.84, 68.50, 68.21, 62.19, 55.11, 37.92, 34.90, 29.47, 21.39, 20.94, 20.76, 20.63, 20.47, 20.29, 20.22, 19.86; FAB-HRMS calcd for $\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{O}_{14} \mathrm{Na} 723.2628$ ( $\mathrm{MNa}^{+}$), found 723.2632. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{O}_{14}: \mathrm{C}, 61.71 ; \mathrm{H}, 6.33$. Found: C, 61.66; H, 6.38.

N6-Benzoyl-9-[5-O-benzyl-3-deoxy-3-(3-O-benzyl-4,5,7-tri-O-acetyl-2,6-anhydro-1-deoxy-D-glycero-D-ido-heptitol-1-yl) $-\beta$-d-ribo-pentofuranosyl]adenine (35). A suspension of $N^{6}$-benzoyladenine ( $343 \mathrm{mg}, 1.43 \mathrm{mmol}$ ) in HMDS/pyridine $(4 \mathrm{~mL} / 2 \mathrm{~mL})$ was heated under reflux for 1 h . The resulting clear solution was evaporated and azeotroped with toluene (three times). To a mixture of the resulting residue and 34 ( $251 \mathrm{mg}, 358 \mu \mathrm{~mol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ was added $\mathrm{SnCl}_{4}$ (209 $\mu \mathrm{L}, 1.79 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 12 h . The resulting mixture was partitioned between AcOEt ( 60 mL ) and aqueous $\mathrm{HCl}(1 \mathrm{M}, 50 \mathrm{~mL})$, and the organic layer was washed with aqueous $\mathrm{HCl}(1 \mathrm{M}, 50 \mathrm{~mL})$, $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, aqueous $\mathrm{NaHCO}_{3}$ (saturated, 50 mL ), and brine ( 50 mL ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} / \mathrm{EtOH}, 60\right.$ : 1) to give 35 ( $265 \mathrm{mg}, 78 \%$ as a white amorphous solid): ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.07$ (br s, $1 \mathrm{H}, \mathrm{NH}$ ), 8.81 (s, 1 H , H-2), 8.51 (s, $1 \mathrm{H}, \mathrm{H}-8$ ), 8.03 (d, $2 \mathrm{H}, \mathrm{Ar}, \mathrm{J}=7.6$ ), $7.62-7.23$
( $\mathrm{m}, 13 \mathrm{H}, \mathrm{Ar}$ ), 6.23 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime}$ ), 5.73 ( $\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-\mathrm{2}^{\prime}, \mathrm{J}=4.6$ ), 5.27 (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{J}=9.1,9.1$ ), 4.86 (dd, $1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}$, J = 9.1, 9.1), 4.67-4.47 (m, $4 \mathrm{H}, \mathrm{PhCH}_{2}$ ), $4.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}-1^{\prime \prime}\right)$, 4.14 (dd, 1 H, H-5'a, J = 4.5, 12.4), 3.94 (dd, $1 \mathrm{H}, \mathrm{H}-6$ 'а, J = $1.9,11.3$ ), 3.81 (dd, $\left.1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}, \mathrm{J}=1.8,12.4\right), 3.74(\mathrm{~m}, 2 \mathrm{H}$, H-5", H-6"b), 3.68 (dd, 1 H, H-2", J = 5.8, 9.4), 2.99 ( $\mathrm{m}, 1 \mathrm{H}$, $\mathrm{H}-3^{\prime}$ ), 2.04 (s, $3 \mathrm{H}, \mathrm{Ac}$ ), 2.02 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$ ), 2.00 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$ ), 1.96 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$ ), 1.89 (m, $\left.1 \mathrm{H}, 3^{\prime}-\mathrm{CHaHb}\right), 1.75$ (m, $1 \mathrm{H}, 3^{\prime}-\mathrm{CH}$ aHb); ${ }^{13} \mathrm{C}$ NMR (CDCl $3,100 \mathrm{MHz}$ ) $\delta 170.05,169.87,169.18,169.15$, $164.27,152.30,150.68,149.11,140.87,136.98,136.70,133.33$, $132.31,128.42,128.36,128.25,128.15,127.87,127.69,127.57$, 127.51, 127.13, 122.96, 88.64, 83.19, 77.14, 77.05, 75.66, 73.59, $72.58,71.37,71.12,68.60,68.49,67.93,61.78,36.14,20.79$, 20.65, 20.60, 20.50, 19.56; FAB-HRMS cal cd for $\mathrm{C}_{46} \mathrm{H}_{50} \mathrm{~N}_{5} \mathrm{O}_{13}$ $880.3404\left(\mathrm{MH}^{+}\right)$, found 880.3488 . Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{49} \mathrm{~N}_{5} \mathrm{O}_{13}{ }^{\circ}$ $0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 62.15 ; \mathrm{H}, 5.67 ; \mathrm{N}, 7.88$. Found: C, 62.17; H, 5.72; N, 7.81 .

1-[5-O-Benzyl-3-deoxy-3-(3-O-benzyl-4,5,7-tri-O-acetyl-2,6-anhydro-1-deoxy-d-gl ycero-d-ido-heptitol-1-yl)- $\beta$-d-ribo-pentofuranosyl]uracil (36). A suspension of uracil (56 $\mathrm{mg}, 500 \mu \mathrm{~mol}$ ) and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(2 \mathrm{mg}, 15 \mu \mathrm{~mol})$ in HMDS (3 mL ) was heated under reflux for 30 min . The resulting clear solution was evaporated and azeotroped with toluene (three times). To a mixture of the resulting residue and $\mathbf{3 4}(50 \mathrm{mg}$, $71 \mu \mathrm{~mol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was added TMSOTf ( $90 \mu \mathrm{~L}, 497$ $\mu \mathrm{mol}$ ) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 4 h . The reaction mixture was partitioned between ACOEt ( 40 mL ) and aqueous $\mathrm{HCl}(1 \mathrm{M}, 30 \mathrm{~mL})$, and the organic layer was washed with aqueous $\mathrm{HCl}(1 \mathrm{M}, 30 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(30$ mL ), aqueous $\mathrm{NaHCO}_{3}$ (saturated, 30 mL ), and brine ( 20 mL ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by col umn chromatography ( $\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} / \mathrm{AcOEt} 1: 1$ ) to give 36 ( $52 \mathrm{mg}, 98 \%$ as a white amorphous): ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 500$ $\mathrm{MHz}) \delta 9.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.96(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-6, \mathrm{~J}=8.2$ ), 7.457.20 ( $\mathrm{m}, 10 \mathrm{H}, \mathrm{Ar}$ ), 5.82 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}^{\prime} \mathrm{l}^{\prime}$ ), 5.49 (d, $1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J}=$ 4.7), 5.35 (dd, $1 \mathrm{H}, \mathrm{H}-5, \mathrm{~J}=2.1,8.2$ ), 5.25 (dd, $1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{J}=$ 8.8, 8.8), 4.86 (dd, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}, \mathrm{J}=8.8,8.8\right), 4.61-4.48(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{PhCH}_{2}$ ), 4.26 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime \prime}, \mathrm{H}^{\prime \prime} 6^{\prime \prime}$ ), 4.05 ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}-6^{\prime \prime} \mathrm{b}$ ), 3.74 (m, $3 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}, \mathrm{H}-5^{\prime} \mathrm{b}, \mathrm{H}-5^{\prime \prime}$ ), 3.64 (dd, $1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$, J = 5.6, 8.8), 2.56 (m, $1 \mathrm{H}, \mathrm{H}-3^{\prime}$ ), 2.05 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$ ), 2.01 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{Ac}$ ), 1.94 (s, $3 \mathrm{H}, \mathrm{Ac}$ ), 1.91 (s, $3 \mathrm{H}, \mathrm{Ac}$ ), 1.79 (m, $\left.1 \mathrm{H}, 3^{\prime}-\mathrm{CHaHb}\right)$, 1.54 (m, $\left.1 \mathrm{H}, 3^{\prime}-\mathrm{CHaHb}\right)$; ${ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 170.42$, $170.39,169.65,169.22,163.23,149.94,139.83,137.41,137.00$, 139.83, 137.41, 137.00, 128.79, 128.52, 128.47, 128.00, 127.90, 127.58, 101.51, 89.88, 83.45, 76.96, 75.64, 73.98, 72.65, 71.16, $70.91,69.00,68.73,67.82,61.67,60.39,35.57,35.57,29.68$, 20.85, 20.75, 20.60, 20.49, 19.83; FAB-HRMS calcd for $\mathrm{C}_{38} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{14} 753.2870\left(\mathrm{MH}^{+}\right)$, found 753.2866. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{14}$ : C, $60.63 ; \mathrm{H}, 5.89 ; \mathrm{N}, 3.72$. Found: C, $60.71 ; \mathrm{H}$, 6.06; N, 3.55.
$\mathrm{N}^{6}$-Benzoyl-9-[5-O-benzyl-3-deoxy-3-(3-O-benzyl-7-O-trityl-2,6-anhydro-1-deoxy-d-gl ycero-d-ido-heptitol-1-yl)-$\beta$-D-ribo-pentofuranosyl]adenine (37). A solution of 35 (224 $\mathrm{mg}, 255 \mu \mathrm{~mol})$ and $\mathrm{NaOMe}(28 \%$ in $\mathrm{MeOH}, 102 \mu \mathrm{~L}, 510 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 50 min and then neutralized with Diaion WK 20 ( $\mathrm{H}^{+}$form). The resin was filtered off, and the filtrate was evaporated. A mixture of the resulting residue and $\operatorname{TrCl}(355 \mathrm{mg}, 1.27 \mathrm{mmol})$ in pyridine ( 2 mL ) was stirred at $50^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was partitioned between AcOEt $(40 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, and the organic layer was washed with aqueous $\mathrm{HCl}(1 \mathrm{M}, 30 \mathrm{~mL})$, $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, aqueous $\mathrm{NaHCO}_{3}$ (saturated, 30 mL ), and brine ( 20 mL ), dried ( $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ), and evaporated. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} / \mathrm{EtOH} 30: 1\right)$ to give 37 ( $235 \mathrm{mg}, 97 \%$ as a white amorphous solid): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.76(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~s}, 1 \mathrm{H})$, 7.86 (d, 2 H, J $=7.6$ ), $7.62-7.16(\mathrm{~m}, 28 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 4.67$ $(\mathrm{m}, 2 \mathrm{H}), 4.53(\mathrm{~m}, 3 \mathrm{H}), 4.32(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.0), 4.27(\mathrm{~m}, 1 \mathrm{H})$, 3.87 (m, 1 H ), 3.68 (dd, $1 \mathrm{H}, \mathrm{J}=9.1,9.1$ ), 3.62 (dd, $1 \mathrm{H}, \mathrm{J}=$ 2.8, 11.0), 3.53 (m, 2 H), 3.45 (dd, $1 \mathrm{H}, \mathrm{J}=9.1,9.1$ ), 3.22 (d, 2 $\mathrm{H}, \mathrm{J}=3.8), 2.61(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 164.12,151.69,149.56,149.07$, 143.24, 140.79, 137.12, 137.03, 133.28, 132.36, 128.66, 128.40, $128.28,128.13,127.75,127.62,127.57,127.43,127.34,126.72$, $124.93,122.79,91.85,86.46,84.13,78.57,77.06,73.12,72.87$,
72.20, 71.64, 71.51, 71.23, 67.98, 64.24, 37.11, 19.64; FABHRMS calcd for $\mathrm{C}_{57} \mathrm{H}_{56} \mathrm{~N}_{5} \mathrm{O}_{9} 954.4077\left(\mathrm{MH}^{+}\right)$, found 954.4094. Anal. Calcd for $\mathrm{C}_{57} \mathrm{H}_{55} \mathrm{~N}_{5} \mathrm{O}_{9} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 70.43 ; \mathrm{H}, 5.91 ; \mathrm{N}, 7.20$. Found: C, 70.80; H, 6.00; N, 7.00.

1-[5-0-Benzyl-3-deoxy-3-(3-0-benzyl-7-0-trityl-2,6-an-hydro-1-deoxy-D-gl ycero-D-i do-heptitol-1-yl)- $\beta$-d-ri bopentofuranosyl]uracil (38). Compound 38 was prepared from 36 ( $47 \mathrm{mg}, 71 \mu \mathrm{~mol}$ ) by the procedure described for the synthesis of 37. The resulting residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} / \mathrm{EtOH} 20: 1\right)$ to give 38 (47 mg, $92 \%$ as a white solid): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 10.40$ (br $\mathrm{s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1), 7.37-7.15(\mathrm{~m}, 25 \mathrm{H}), 5.77(\mathrm{~s}, 1$ H), $4.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1), 4.59(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{~m}$, $1 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.9)$, $3.89(\mathrm{~m}, 1 \mathrm{H}), 3.69$ (dd, $1 \mathrm{H}, \mathrm{J}=8.9,8.9$ ), $3.57(\mathrm{~m}, 4 \mathrm{H}), 3.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.6)$, $2.30(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}$, $125 \mathrm{MHz}) \delta 163.87,151.13,143.93,140.07,137.88,137.52$, 137.16, 128.77, 128.71, 128.60, 128.27, 128.10, 127.78, 127.19, 101.38, 92.84, 86.56, 84.30, 79.08, 77.47, 76.39, 73.57, 73.49, 72.52, 71.91, 71.48, 71.03, 68.28, 63.87, 49.42, 49.25, 49.07, 36.75, 19.24; FAB-HRMS calcd for $\mathrm{C}_{49} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Na} 849.3363$ ( $\mathrm{MNa}^{+}$), found 849.3387. Anal. Calcd for $\mathrm{C}_{49} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{10} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 69.65; H, 6.20; N, 3.32. Found: C, 69.33; H, 6.30; N, 3.20.
$\mathrm{N}^{6}$-Benzoyl-9-[5-O-benzyl-3-deoxy-3-[3-O-benzyl-7-O-trityl-4,5-bis-0-(o-xyloxyphosphoryl)-2,6-anhydro-1-deoxy-D-glycero-D-ido-heptitol-1-yl]-2-O-(o-xyloxyphosphoryl)-$\beta$-d-ribo-pentofuranosyl]adenine (39). XEPA ( $239 \mu \mathrm{~L}, 1.11$ $\mathrm{mmol})$ was added to a mixture of $37(235 \mathrm{mg}, 246 \mu \mathrm{~mol})$ and 1 H -tetrazole ( $121 \mathrm{mg}, 1.73 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 20 min . After addition of $\mathrm{H}_{2} \mathrm{O}(40 \mu \mathrm{~L})$, the mixture was stirred at room temperature for 10 min . The resulting mixture was cool ed to $-40^{\circ} \mathrm{C}$, and m-CPBA ( $299 \mathrm{mg}, 1.73 \mathrm{mmol}$ ) was added. The mixture was warmed to room temperature over 20 min . The reaction mixture was partitioned between AcOEt $(40 \mathrm{~mL})$ and aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (saturated, 30 mL ), and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, aqueous $\mathrm{NaHCO}_{3}$ (saturated, 30 $\mathrm{mL})$, and brine ( 20 mL ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography ( $\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} /$ acetone 5:1) to give 39 ( $345 \mathrm{mg}, 92 \%$ as a white amorphous): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.93$ (br s, $\left.1 \mathrm{H}, \mathrm{NH}\right), 8.60(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{H}-2), 8.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 7.99(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.04(\mathrm{~m}, 40 \mathrm{H})$, $6.44\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.51-3.21\left(\mathrm{~m}, 27 \mathrm{H}, 6 \times \mathrm{XEP}^{2}-\mathrm{CH}_{2}, 2 \times\right.$ $\mathrm{PhCH}_{2}, \mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime} \mathrm{a}, \mathrm{H}-5^{\prime} \mathrm{b}, \mathrm{H}-1^{\prime \prime}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-5^{\prime \prime}$, H-6"а, H-6" ${ }^{\prime}$ ), $2.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 2.01\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 163.83,152.26,150.23,148.84$, 143.84, 143.04, 140.65, 137.27, 136.86, 135.04, 134.80, 134.70, 134.66, 134.55, 134.38, 133.47, 132.31, 129.12, 129.07, 128.94, 128.86, 128.52, 128.48, 128.41, 128.34, 128.27, 128.17, 128.13, $127.98,127.42,127.20,127.15,127.11,126.49,122.40,88.60$, 86.48, 82.95, 82.31, 82.24, 78.69, 77.11, 74.75, 73.19, 72.30, $70.77,70.73,70.51,69.28,68.78,68.70,68.59,68.51,68.45$, $68.35,68.28,68.10,68.01,67.94,67.63,67.57,62.29,53.70$, $39.02,38.98,37.12,37.05,31.64,29.17,19.74,14.00,13.98$; ${ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right) \delta 0.57,-0.92,-1.13$; FAB-HRMS calcd for $\mathrm{C}_{81} \mathrm{H}_{77} \mathrm{~N}_{5} \mathrm{O}_{18} \mathrm{P}_{3} 1500.4477\left(\mathrm{MH}^{+}\right)$, found 1500.4460. Anal. Calcd for $\mathrm{C}_{81} \mathrm{H}_{76} \mathrm{~N}_{5} \mathrm{O}_{18} \mathrm{P}_{3} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 64.07 ; \mathrm{H}, 5.18 ; \mathrm{N}, 4.61$. Found: C, 63.88; H, 5.51; N, 4.62.

1-[5-0-Benzyl-3-deoxy-3-[3-0-benzyl-7-0-trityl-4,5-bis-O-(o-xyloxyphosphoryl)-2,6-anhydro-1-deoxy-d-gl ycero-D-ido-heptitol-1-yl]-2-0-(o-xyloxyphosphoryl)- $\beta$-D-ribopentofuranosyl]uracil (41). Compound 41 was prepared from 38 ( $28 \mathrm{mg}, 34 \mu \mathrm{~mol}$ ) by the procedure described for the synthesis of 39. The resulting residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} / \mathrm{EtOH} 40: 1\right)$ to give $41(39 \mathrm{mg}$, $84 \%$ as a white solid): ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.91$ (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$ ), 7.63 (d, $1 \mathrm{H}, \mathrm{H}-6, \mathrm{~J}=8.2$ ), $7.49-7.12(\mathrm{~m}, 37 \mathrm{H}$, Ar), $6.11\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime}\right), 5.48-3.21\left(\mathrm{~m}, 28 \mathrm{H}, 6 \times \mathrm{XEP}^{2}-\mathrm{CH}_{2}, 2\right.$ $\times \mathrm{PhCH}_{2}, \mathrm{H}-5, \mathrm{H}-27$, H-4', H-5'a, H-5'b, H-1", H-2", H-3", H-4'", H-5", H-6"a, H-6"b), 2.50 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{3}^{\prime}$ ), 1.98 ( $\mathrm{m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{CH}_{2}$ ); ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}{ }^{\prime} 125 \mathrm{MHz}$ ) $\delta 162.58,149.96,143.59,139.25$, 138.03, 137.27, 135.49, 135.27, 135.12, 135.07, 134.89, 134.87, $129.42,129.15,128.96,128.88,128.83,128.78,128.70,128.64$, 128.59, 128.54, 128.50, 128.36, 128.25, 128.01, 127.90, 127.73, $127.48,127.41,127.07,101.78,89.63,86.69,82.99,82.11$,
79.06, 77.65, 77.26, 75.32, 73.45, 72.34, 70.79, 70.27, 68.97, 68.92, 68.83, 68.78, 68.70, 68.50, 68.22, 68.17, 67.84, 62.39, 39.18, 36.91, 19.47, 14.05; ${ }^{31}$ P NMR (CDCl ${ }_{3}, 67.5 \mathrm{MHz}$ ) $\delta-0.71$, $-1.03,1.20$; UV (MeOH) $\lambda_{\text {max }} 280 \mathrm{~nm} ;$ FAB-HRMS calcd for $\mathrm{C}_{72} \mathrm{H}_{72} \mathrm{~N}_{2} \mathrm{O}_{19} \mathrm{P}_{3} 1373.3942\left(\mathrm{MH}^{+}\right)$, found 1373.3860. Anal. Calcd for $\mathrm{C}_{73} \mathrm{H}_{71} \mathrm{~N}_{2} \mathrm{O}_{19} \mathrm{P}_{3} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 63.02 ; \mathrm{H}, 5.29 ; \mathrm{N}, 2.01$. Found: C, 62.97; H, 5.48; N, 2.51.

9-[5-O-Benzyl-3-deoxy-3-[3-O-benzyl-7-O-trityl-4,5-bis-O-(o-xyloxyphosphoryl)-2,6-anhydro-1-deoxy-D-glycero-D-ido-heptitol-1-yl]-2-0-(o-xyloxyphosphoryl)- $\beta$-D-ribopentofuranosyl Jadenine (40). A mixture of 39 ( $17 \mathrm{mg}, 11$ $\mu \mathrm{mol}$ ) in aqueous $\mathrm{NH}_{3}(25 \%) /$ dioxane ( $1 \mathrm{~mL} / 1 \mathrm{~mL}$ ) was stirred at room temperature for 7 h and then evaporated. The resulting residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} / \mathrm{EtOH} 30: 1\right)$ to give $\mathbf{4 0}$ ( $14 \mathrm{mg}, 89 \%$ as a white amorphous): ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2)$, 8.00 (s, $1 \mathrm{H}, \mathrm{H}-8$ ), $7.82-7.03$ ( $\mathrm{m}, 37 \mathrm{H}, \mathrm{Ar}$ ), 6.33 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$ ), 5.54 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$ ), 5.50-3.24 (m, $27 \mathrm{H}, 6 \times \mathrm{XEP}-\mathrm{CH}_{2}, 2 \times$ $\mathrm{PhCH}_{2}, \mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime} \mathrm{a}, \mathrm{H}-5^{\prime} \mathrm{b}, \mathrm{H}-1^{\prime \prime}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-5^{\prime \prime}$, H-6"a, H-6"b), $3.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 2.03\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 169.03, 155.02, 152.55, 148.80, $143.08,138.23,137.37,137.12,135.04,134.75,134.64,134.61$, 134.43, 133.14, 131.39, 129.01, 128.93, 128.80, 128.71, 128.57, 128.49, 128.41, 128.34, 128.28, 128.19, 128.10, 128.02, 127.93, 127.29, 127.24, 127.14, 127.05, 127.01, 126.52, 119.44, 88.83, 86.53, 82.80, 82.36, 82.31, 78.72, 77.32, 77.09, 74.94, 73.12, 72.20. 70.61, 68.70, 68.56, 68.50, 68.43, 68.36, 67.99, 67.92, $67.65,67.58,62.15,39.03,38.99,37.80,37.73,19.91,14.01$, 13.98; ${ }^{31}$ ) NMR (CDCl $\left.{ }_{3}, 67.5 \mathrm{MHz}\right) \delta 0.48,-0.77,-1.12$; UV (MeOH) $\lambda_{\text {max }} 261 \mathrm{~nm} ;$ FAB-HRMS calcd for $\mathrm{C}_{74} \mathrm{H}_{73} \mathrm{~N}_{5} \mathrm{O}_{17} \mathrm{P}_{3}$ 1396.4214(MH ${ }^{+}$), found 1396.4290. Anal. Cal cd for $\mathrm{C}_{74} \mathrm{H}_{72} \mathrm{~N}_{5} \mathrm{O}_{17} \mathrm{P}_{3}$. $\mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 62.84 ; \mathrm{H}, 5.27$; N , 4.95. Found: C, 62.50; H, 5.42; N, 5.27.

9-[3-Deoxy-3-(4,5-di-O-phosphoryl-2,6-anhydro-1-deoxy-D-gl ycero-D-i do-heptitol-1-yl)-2-0-phosphoryl- $\beta$-d-ribopentofuranosyl]adenine Hexasodium Salt (9). A mi xture of $\mathbf{4 0}(10 \mathrm{mg}, 7.4 \mu \mathrm{~mol})$ and Pd-black ( 2 mg ) in aqueous MeOH ( $80 \%, 1 \mathrm{~mL}$ ) was stirred under atmospheric pressure of hydrogen at room temperature for 72 h . After the catalysts were filtrated through a Celite pad, the filtrated was evaporated. A solution of the residue in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was applied to Daiaion WK-20 ( $\mathrm{Na}^{+}$form, developed with $\mathrm{H}_{2} \mathrm{O}$ ), and the fractions containing 9 were evaporated and dried in vacuo to give 9 ( 5.6 mg as a white solid, yield $85 \%$ based on quantitative UV analysis). This compound was hygroscopic, and therefore, the solvation status was measured by quantitative UV absorption at 260 nm . The content was $89 \%$ based on an molar absorption coefficient of $2^{\prime}-A M P:{ }^{23}{ }^{1} \mathrm{H}$ NMR ( $\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}$ ) $\delta$ 8.29 (s, 1 H, H-2), 8.17 (s, 1 H, H-8), 6.35 (s, 1 H, H-1'), 5.00 (dd, $\left.1 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{J}=4.9,7.6\right), 4.21\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}-1^{\prime \prime}, \mathrm{H}-4^{\prime \prime}\right)$, 4.07 (dd, $1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{a}$, J = 6.8, 12.9), 3.92 (ddd, $1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{J}=$ $5.7,5.7,10.0$ ), 3.82 (dd, 1 H, H-5'a, J $=1.4,13.0$ ), 3.79 (m, 2 H, H-2", H-5"), 3.65 (dd, 1 H, H-5'b, J = 3.7, 13.0), 3.57 (dd, $1 \mathrm{H}, \mathrm{H}-6^{\prime \prime} \mathrm{b}, \mathrm{J}=3.2,12.9$ ), $2.71\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 2.02(\mathrm{~m}, 1 \mathrm{H}$, $\left.3^{\prime}-\mathrm{CHaHb}\right), 1.80\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\mathrm{CHaHb}\right)$; ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}$ ) $\delta 155.48,152.47,148.74,140.25,118.67,89.32,85.62,77.64$, 75.59, 68,41, 60.92, 59.69, 48.83, 37.78, 37.73, 23.24, 20.02; ${ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 67.5 \mathrm{MHz}\right) \delta 4.68,4.20,4.14 ;$ UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\max }$ $260 \mathrm{~nm} ;$ FAB-HRMS (triethylammonium salt, negative) calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{17} \mathrm{P}_{3} 666.0615\left[(\mathrm{M}-\mathrm{H})^{-}\right]$, found 666.0615 .

1-[3-Deoxy-3-(4,5-di-O-phosphoryl-2,6-anhydro-1-deoxy-D-gl ycero-d-ido-heptitol-1-yl)-2-0-phosphoryl- $\beta$-d-ribopentofuranosyl]uracil Hexasodium Salt (10). Compound $\mathbf{1 0}$ ( 5 mg as white solid, yield $85 \%$ based on quantitative UV analysis) was prepared from 41 ( $10 \mathrm{mg}, 2.2 \mu \mathrm{~mol}$ ) by the procedure described for the synthesis of 9 with $10 \% \mathrm{Pd}-\mathrm{C}$ (4 mg ) instead of Pd-black. This compound was hygroscopic, and therefore, the solvation status was measured by quantitative UV absorption at 260 nm : the content was $91 \%$ based on an molar absorption coefficient of $2^{\prime}-U M P: 2^{23} \mathrm{H}$ NMR ( $\mathrm{D}_{2} \mathrm{O}, 500$ $\mathrm{MHz}) \delta 7.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-6, \mathrm{~J}=7.7), 6.02\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime}\right), 5.72(\mathrm{~d}$,
(23) Dawson, R. M. C.; Elliott, D. C.; Elliott, W. H.; J ones, K. M. Data for Biochemical Research. Oxford; Clarendon Press: 1986.
$1 \mathrm{H}, \mathrm{H}-5, \mathrm{~J}=7.7$ ), $4.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Z}^{\prime}\right), 4.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime \prime}\right.$, H-4"), 4.07 (m, 2 H, H-4', H-6"a), 3.93 (ddd, $1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, \mathrm{J}=$ 5.0, 5.0, 10.8), 3.85 (m, 2 H, H-5'a, H-2"), 3.78 (dd, 1 H, H-5" , $\mathrm{J}=3.5,5.7$ ), 3.68 (dd, $1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}, \mathrm{J}=4.5,12.8$ ), 3.61 (dd, 1 H , $\mathrm{H}^{\prime \prime} \mathbf{\prime}^{\prime} \mathrm{b}, \mathrm{J}=3.5,12.9$ ), $2.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 2.00\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\right.$ $\mathrm{CHaHb}), 1.72\left(\mathrm{~m}, 1 \mathrm{H}, 3^{3}-\mathrm{CH} a \mathrm{Hb}\right)$ ) ${ }^{31} \mathrm{P}$ NMR ( $\mathrm{D}_{2} \mathrm{O}, 67.5 \mathrm{MHz}$ ) $\delta 4.57,4.09,3.93 ;$ UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\max } 262 \mathrm{~nm} ;$ FAB-HRMS (triethylammonium salt, negative) calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \quad \mathrm{~N}_{2} \mathrm{O}_{19} \mathrm{P}_{3}$ $643.0343\left[(\mathrm{M}-\mathrm{H})^{-}\right]$, found 643.0359 .

Acknowledgment. This investigation was supported in part by a Grant from the Ministry of Education, Science, Sports, and Culture of J apan. We ac-
knowledge useful discussions with Mr. I. Sugimoto, Drs. S. Ichikawa and A. M. Riley, and Prof. B. V. L. Potter. We are also grateful to Ms. H. Matsumoto, A. Maeda, S. Oka, and N. Hazama (Center for Instrumental Analysis, Hokkaido U niversity) for technical assistance with NMR, MS, and elemental analysis.

Supporting Information Available: ${ }^{1} \mathrm{H}$ NMR spectral charts of 18, 21-23, 21', 22, 26, 29, 31, 32, 9, and 10. This material is available free of charge via the Internet at http://pubs.acs.org.
J 00001333


[^0]:    ${ }^{\dagger}$ Nucleosides and Nucleotides. 197. For part 196 in the series, see: Nomura, M.; Shuto, S.; Matsuda, A. J. Org. Chem., in press.

    * To whom correspondence and reprint requests should be addressed. Phone: +81-11-706-3229. Fax: +81-11-706-4980. E-mail: shu@pharm.hokudai.ac.jp.
    (1) Berridge, M. J. Nature 1993, 361, 315-325.
    (2) Potter, B. V. L.; Nahorski, S. R. In Drug Design for Neuroscience, Kozikowski, A. P. Ed. New York: Raven Press: 1993; pp 383-416.
    (3) Potter, B. V. L.; Lampe, D. Angew. Chem., Int. Ed. Engl. 1995, 34, 1933-1972, and references sited therein.
    (4) (a) Takahashi, M.; K agasaki, T.; Hosoya, T.; Takahashi, S. J. Antibiot. 1993, 46, 1643-1647. (b) Takahashi, S.; Kinoshita, T. Takahashi, M. J. Antibiot. 1994, 47, 95-100. (c) Takahashi, M.; Tanzawa, K.; Takahashi, S. J. Biol. Chem. 1994, 269, 369-372. (d) Hirota, J.; Michikawa, T.; Miyawaki, A.; Takahashi, M.; Tanzawa, K.; Okura, I.; Furuichi, T.; Mikoshiba, K. FEBS Lett. 1995, 368, 248252.
    (5) (a) Hotoda, H.; Takahashi, M.; Tanzawa, K.; Takahashi, S.; Kaneko, M. Tetrahedron Lett. 1995, 36, 5037-5040. (b) van Straten, N. C. R.; van der Marel, G. A.; van Boom, J. H. Tetrahedron 1997, 53, 6509-6522. (c) Marwood, R. D.; Correa, V.; Taylor, C. W.; Potter, B. V. L. Tetrahedron Asymm. 2000, 11, 397-403.

[^1]:    (6) Studies on analogues of adenophostin A by us: (a) Tatani, K.; Shuto, S.; Ueno, Y.; Matsuda, A. Tetrahedron Lett. 1998, 39, 50655068. (b) Shuto, S.; Tatani, K.; Ueno, Y. Matsuda, A. J. Org. Chem. 1998, 63, 8815-8824. (c) Kashiwayanagi, M.; Tatani, K.; Shuto, S.; Matsuda, A. Eur. J. Neurosci. 2000, 12, 606-612. (d) Shuto, S.; Terauchi, M.; Yahiro, Y.; Abe, H. Ichikawa, S.; Matsuda, A. Tetrahe dron Lett. 2000, 41, 4151-4155.
    (7) Studies on analogues of adenophostin A by others (a) J enkins, D. J.; Potter, B. V. L. Carbohydr. Res. 1996, 287, 169-182. (b) Marchant, J . S.; Beecroft, M. D.; Riley, A. M.; J enkins, D.J .; Marwood, R. D.; Taylor, C. W.; Potter, B. V. L. Biochemistry 1997, 36, 1278012790. (c) Murphy, C. T.; Riley, A. M.; Lindley, C. J .; J enkins, D. J .; Westwick, J.; Potter, B. V. L. Mol. Pharmacol. 1997, 52, 741-748. (d) Marwood. R. D.; Riley, A. M.; Correa, V.; Taylor, C. W.; Potter, B. V. L. Bioorg. Med. Chem. Lett. 1999, 9, 453-458. (e) Beecroft, M. D.; Marchant, J. S.; Riley, A. M.; van Straten, N. C. R.; van der Marel, G. A.; van Boom, J. H; Potter, B. V. L.; Taylor, C. W. Mol Pharmacol., 1999, 55, 109-117. (f) Wilcox, R. A.; Erneux, C.; Primrose, W. U.; Gigg, R.; Nahorski, S. R. Mol. Pharmacol. 1995, 47, 1204-1211. (g) van Straten, N. C. R.; van der Marel, G. A.; van Boom, J . H. Tetrahedron, 1997, 53, 6523-6538. (h) van Straten, N. C. R.; Kriek, N. M. A. J.; Cziria, Z. A. C.; van der Marel, G. A.; van Boom, J . H. Tetrahedron, 1997, 53, 6539-6554. (i) Hotoda, H.; Murayama, K.; Miyamoto, S.; Iwata, Y.; Takahashi, M.; Kawase, Y.; Tanzawa, K. Kaneko, M. Biochemistry, 1999, 38, 9234-9241.
    (8) (a) Postema, M. H. D. Tetrahedron 1992, 48, 8545-8599. (b) J aramillo, C.; Knapp S. Synthesis 1994, 1-20. (c) Levy, D. E.; Tang, C. The Chemistry of C-Glycosides. Oxford: Pergamon Press: 1995. (d) Postema, M. H. D. C-Glycoside Synthesis. Boca Raton: CRC Press: 1995.

[^2]:    (9) (a) J uaristi, E.; Cuevas, G. Tetrahedron, 1992, 48, 5019-5087. (b) Chapleur, Y. Eds. Carbohydrate Mimics. Weinheim: Wiley-VCH: 1998.
    (10) (a) Marwood, R. D.; Shuto, S.; J enkins, D. J.; Potter, B. V. L. Chem. Commun. 2000, 219-220. (b) Correa, V. Marwood, R. D.; Shuto, S.; Riley, A. M.; J enkins, D. J .; Potter, B. V. L.; Taylor, C. W. Brit. J . Pharmacol. in press.
    (11) Synthetic studies of C-glycosidic disaccharides using the temporary silicon-tethered radical coupling strategy: (a) Xin, Y. C.; Mallet, J .-M.; Sinay, P. J. Chem. Soc. Chem. Commun. 1993, 864-865. (b) Myers, A. G.; Gin, D. Y.; Rogers, D. H. J . Am. Chem. Soc. 1994, 116, 4697-4718. (c) Fairbanks, A. J .; Perrin, E.; Sinay, P. Synlett 1996, 679-681. (d) Rekai, E.; Rubinsten, G.; Mallet, J.-M. M.; Sinay, P. Synlett 1998, 831-834. (e) Rubinsten, G.; Mallet, J.-M.; Sinay, P. Tetrahedron Lett. 1998, 39, 3697-3700.
    (12) A part of this study has been described in a communication: Abe, H.; Shuto, S.; Matsuda, A. Tetrahedron Lett. 2000, 41, 23912394.
    (13) (a) Giese B. Angew. Chem., Int. Ed. Engl. 1989, 28, 969-980. (b) Rychnovsky, S. D.; Powers, J. P.; Lepage, T. J. J. Am. Chem. Soc. 1992, 114, 8375-8384.

[^3]:    a Conditions: (a) (1) NaOMe , THF/MeOH, rt, (2) NaH , BnBr , HMPA/DMF, rt; (b) (1) PhSeH, molecular sieves 3 A , MeNO2, reflux; (c) NaOMe , THF/MeOH, rt, $59 \%$ (from 15); (d) (1) $\mathrm{CrO}_{3}, \mathrm{Ac}_{2} \mathrm{O}$, py, molecular sieves $4 \mathrm{~A}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, (2) $\mathrm{NaOCMe} \mathrm{e}_{2} \mathrm{Et}, \mathrm{Ph} 3 \mathrm{PMeBr}, \mathrm{THF}, \mathrm{rt}$, $72 \%$; (e) (1) BzCl, DMAP, py, rt, (2) aqueous $\mathrm{NH}_{3}, 0{ }^{\circ} \mathrm{C}, 95 \%$; (f) TFA, $\mathrm{CHCl}_{3}, \mathrm{rt}, 84 \%$; (g) (1) $\mathbf{1 3}, \mathrm{Me}_{2} \mathrm{SiCl}_{2}, \mathrm{BuLi}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$ to rt, (2) 14, $E t_{3} \mathrm{~N}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}$ to rt; (f) (1) $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$, benzene, reflux, (2) TBAF, THF, rt, $21+22$ ( $35 \%$ from 13, $28: 72$ ), 23 ( $25 \%$ from 13 ).

[^4]:    (14) Banoub, J.; Boullanger, P.; Potier, M.; Descotes, G. Tetrahedron Lett. 1986, 27, 4145-4148.
    (15) A similar ring-opening reaction of sugar ortho esters with PhSH has been reported: Skrydstrup, T.; Mazéas, D.; Elmouchir, M.; Doisneau, G.; Riche, C.; Chiaroni, A.; Beau, J.-M. Chem. Eur. J. 1997, 3, 1342-1356.
    (16) Synthesis of a similar 3'-deoxy-3'-methyleneadenosine derivative has been reportted: Samana, V.; Robins, M. J. J . Org. Chem. 1991, 56, 7108-7113.
    (17) Ti, G. S.; Gaffney, B. L.; J ones, R. A. J. Am. Chem. Soc. 1982, 104, 1316-1319.

[^5]:    (18) Niedballa, U.; Vorbrüggen, H. J . Org. Chem. 1974, 39, 36543660.
    (19) Hattori, H.; Tanaka, M.; Fukushima, M.; Sasaki, T.; Matsuda, A. J. Med. Chem. 1996, 39, 5005-5011.

[^6]:    (21) Blank, H. U.; Frahne, D.; Myles, A.; Pfleiderer, W. J ustus Liebigs Ann. Chem. 1970, 742, 34-42.
    (22) Hakimelahi, G. H.; Proba, Z. A.; Ogilvie, K. K. Tetrahedron Lett. 1981, 22, 4775-4778.

